Grade 8 Learning Acceleration Guidance

Learning acceleration will ensure students have the skills they need to equitably access and practice on-grade level content. This chart is a reference guide for teachers to help them more quickly identify the specific prerequisite and co-requisite standards necessary for every Grade 8 math standard. Students should spend the large majority of their time on the major work of the grade (\square). Supporting work (\square) and, where appropriate, additional work (\square) can engage students in the major work of the grade.

$8^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$8^{\text {th }}$ Grade Standards Taught in Advance	$8^{\text {th }}$ Grade Standards Taught Concurrently
8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually. Convert a decimal expansion which repeats eventually into a rational number by analyzing repeating patterns.			8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of V 2 , show that V 2 is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations to the hundredths place. 8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.
8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of V 2 , show that $\sqrt[V]{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations to the hundredths place.			8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually. Convert a decimal expansion which repeats eventually into a rational number by analyzing repeating patterns. 8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that V 2 is irrational.

 exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=$ $1 / 3^{3}=1 / 27$.

8.EE.A. 2

Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.

8.EE.A. 3

Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 times 10^{8} and the population of the world as 7 times 10^{9}, and determine that the world population is more than 20 times larger.

Write and evaluate numerical expressions involving whole-number exponents.

6.EE.B. 5

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

7.NS.A. 3

Solve real-world and mathematical problems involving the four operations with rational numbers.

4.OA.A. 2

Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison (Example: 6 times as many vs. 6 more than). 5.NBT.A. 2

Explain and apply patterns in the number of zeros of the product when multiplying a number by powers of 10 . Explain and apply patterns in the values of the digits in the product or the quotient, when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 . For example, $10^{\circ}=1,10^{1}=10 \ldots$ and $2.1 \times 10^{2}=210$.

8.NS.A. 1

Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually. Convert a decimal expansion which repeats eventually into a rational number by analyzing repeating patterns.

8.NS.A. 2

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations to the hundredths place.

8.G.B. 6

Explain a proof of the Pythagorean Theorem and its converse using the area of squares.

8.EE.A. 4

Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.

8.EE.A. 4

Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.

8.EE.B. 5

Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
7.EE.B. 3

Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10\% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar 9 3/4 inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

7.RP.A. 2

Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=$ $1 / 3^{3}=1 / 27$.
8.EE.A. 3

Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 times 10^{8} and the population of the world as 7 times 10^{9}, and determine that the world population is more than 20 times larger.

8.EE.B. 6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $\mathrm{y}=\mathrm{mx}$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

$8^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$8^{\text {th }}$ Grade Standards Taught in Advance	$8^{\text {th }}$ Grade Standards Taught Concurrently
8.EE.B. 6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.	7.RP.A. 2 Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate. 7.G.A. 2 Draw (freehand, with ruler and protractor, or with technology) geometric shapes with given conditions. (Focus is on triangles from three measures of angles or sides, noticing when the conditions determine one and only one triangle, more than one triangle, or no triangle.	8.G.A. 5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	8.EE.B. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distancetime equation to determine which of two moving objects has greater speed.

8.EE.C. 7
 Solve linear equations in one variable.

a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).
b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

8.EE.C. 8

Analyze and solve pairs of simultaneous linear equations
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).

6.EE.B. 5

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true
8.SP.A. 3

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 $\mathrm{cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height

B.EE.B. 6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b
8.F.A. 1

Understand that a function is a rule that
assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in this grade level.)
7.RP.A. 2

Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships
c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

$8^{\text {th }}$ Grade Standard
8.F.A. 2
Compare properties of two functions each
represented in a different way (algebraically,
graphically, numerically in tables, or by verbal
descriptions). For example, given a linear
function represented by a table of values and
a linear function represented by an algebraic
expression, determine which function has the
greater rate of change.

8.F.A. 2
represent graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic greater rate of change.
7.RP.A. 2

Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

8.EE.B. 5

Graph proportional relationships, interpreting the unit rate as the slope of the graph.
Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

8.EE.B. 6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

8.F.A. 1

Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in this grade level.)

Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

8.EE.B. 6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation
$y=m x+b$ for a line intercepting the vertical axis at b.

8.F.A. 1

Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in this grade level.)

8.F.A. 2

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the

8.F.B. 4
 Construct a function to model a linear relationship between two quantities.

 Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.7.RP.A. 2

Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

8.F.B. 5

Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. 8.SP.A. 2

Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

8.SP.A. 3

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 $\mathrm{cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.

$8^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$8^{\text {th }}$ Grade Standards Taught in Advance	$8^{\text {th }}$ Grade Standards Taught Concurrently
8.F.B. 5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.		8.F.A. 1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in this grade level.) 8.F.A. 2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change. 8.F.A. 3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.	8.F.B. 4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
8.G.A. 1 Verify experimentally the properties of rotations, reflections, and translations: a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.	7.G.A. 2 Draw (freehand, with ruler and protractor, or with technology) geometric shapes with given conditions. (Focus is on triangles from three measures of angles or sides, noticing when the conditions determine one and only one triangle, more than one triangle, or no triangle. 7.G.B. 5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.		

8.G.A. 2

Explain that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. (Rotations are only about the origin and reflections are only over the y-axis and x-axis in Grade 8.)
8.G.A. 3
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the y-axis and x-axis in Grade 8.)

6.G.A. 3

Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.

8.G.A. 4

Explain that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the y-axis and x-axis in Grade 8.)

B.G.A. 1

Verify experimentally the properties of rotations, reflections, and translations:
a. Lines are taken to lines, and line
segments to line segments of the same length.
b. Angles are taken to angles of the same measure.
c. Parallel lines are taken to parallel lines.

8.G.A. 1

Verify experimentally the properties of rotations, reflections, and translations:
a. Lines are taken to lines, and line
segments to line segments of the same length.
b. Angles are taken to angles of the same measure.
c. Parallel lines are taken to parallel lines.

8.G.A. 2

Explain that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. (Rotations are only about the origin and reflections are only over the y-axis and x-axis in Grade 8.)

8.G.A. 3

Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the y-axis and x-axis in Grade 8.)

$8^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$8^{\text {th }}$ Grade Standards Taught in Advance	$8^{\text {th }}$ Grade Standards Taught Concurrently
8.G.A. 5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.		8.G.A. 2 Explain that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. (Rotations are only about the origin and reflections are only over the y-axis and x-axis in Grade 8.) 8.G.A. 4 Explain that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Rotations are only about the origin, dilations only use the origin as the center of dilation, and reflections are only over the y-axis and x-axis in Grade 8.)	
8.G.B. 6 Explain a proof of the Pythagorean Theorem and its converse using the area of squares.	7.G.B. 6 Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. (Pyramids limited to surface area only.)		8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that V 2 is irrational. 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions.
8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions.			8.G.B. 6 Explain a proof of the Pythagorean Theorem and its converse using the area of squares.
8.G.B. 8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	6.G.A. 3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.	8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions.	

$8^{\text {th }}$ Grade Standard
Know the formulas for the volumes of cones,
cylinders, and spheres and use them to solve
real-world and mathematical problems.
8.SP.A.1
Construct and interpret scatter plots for
bivariate measurement data to investigate
patterns of association between two
quantities. Describe patterns such as
clustering, outliers, positive or negative
association, linear association, and nonlinear
association.
8.SP.A.2
Know that straight lines are widely used to
model relationships between two
quantitative variables. For scatter plots that
suggest a linear association, informally fit a
straight line, and informally assess the model
fit by judging the closeness of the data points
to the line.
8.SP.A.3
Use the equation of a linear model to solve
problems in the context of bivariate
measurement data, interpreting the slope
and intercept. For example, in a linear model
for a biology experiment, interpret a slope of
1.5 cm/hr as meaning that an additional hour
of sunlight each day is associated with an
additional 1.5 cm in mature plant height.

8.G.C. 9

Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

.SP.A. 1

Construct and interpret scatter plots for association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association

Know that straight lines are widely used to model relationships between two uantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the mode fit by judging the closeness of the data points to the line.

8.SP.A. 3

equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope dercept. For example, in a linear model for a biology experiment, interpret a slope of sunlight each day is associated with an additional 1.5 cm in mature plant height

Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=\mathrm{p}$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.

Solve real-world and mathematical problems

6.NS.C. 8 by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate

8.SP.A. 1

Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

8.SP.A. 2

Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

8.F.B. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.F.B. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.SP.A. 4

Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative
frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?

