Grade 7 Learning Acceleration Guidance

Learning acceleration will ensure students have the skills they need to equitably access and practice on-grade level content. This chart is a reference guide for teachers to help them more quickly identify the specific prerequisite and co-requisite standards necessary for every Grade 7 math standard. Students should spend the large majority of their time on the major work of the grade (\square). Supporting work (\square) and, where appropriate, additional work (\square) can engage students in the major work of the grade.

$7^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$7^{\text {th }}$ Grade Standards Taught in Advance	$7^{\text {th }}$ Grade Standards Taught Concurrently
7.RP.A. 1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 2 / 1 / 4$ miles per hour, equivalently 2 miles per hour.	6.RP.A. 2 Understand the concept of a unit rate a/b associated with a ratio a: b with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of \$5 per hamburger."		

7.RP.A. 2

Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
6.RP.A. 2

Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of \$5 per hamburger."

6.RP.A. 3

Use ratio and rate reasoning to solve realworld and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what unit rate were lawns being mowed?
c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent.
d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

7.RP.A. 1

Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction $1 / 2 / 1 / 4$ miles per hour, equivalently 2 miles per hour.

$7^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$7^{\text {th }}$ Grade Standards Taught in Advance	$7^{\text {th }}$ Grade Standards Taught Concurrently
7.RP.A. 3 Use proportional relationships to solve multistep ratio and percent problems of simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, and percent error.	6.RP.A. 3 Use ratio and rate reasoning to solve realworld and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what unit rate were lawns being mowed? c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent. d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.	7.RP.A. 2 Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.	

7.NS.A. 1

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
a. Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.
b. Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
d. Apply properties of operations as strategies to add and subtract rational numbers.
5.NF.A. 1

Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=$ ($a d+b c$)/bd.)

6.NS.C. 5

Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
7.NS.A. 2

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (1) $(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing realworld contexts.
b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number.
If p and q are integers, then $-(p / q)=(-$ $p) / q=p /(-q)$. Interpret quotients of rational numbers by describing realworld contexts.
c. Apply properties of operations as strategies to multiply and divide rational numbers.
d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.
5.NF.B. 3

Interpret a fraction as division of the numerator by the denominator ($a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie? 5.NF.B. 4

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \mathrm{x}$ $q \div n$. For example, use a visual fraction model to show understanding, and create a story context for $(m / n) \times q$.
b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [In general, $(m / n) \times(c / d)=(m c) /(n d)$.]
c. Find the area of a rectangle with fractiona side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

6.NS.A. 1

interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (ln general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?
7.NS.A. 3

Solve real-world and mathematical problems involving the four operations with rational numbers.

7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).

7.EE.A. 2

Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=$ 1.05 means that "increase by 5% " is the same as "multiply by 1.05."
4.OA.A. 3
Solve multi-step word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. Example: Twenty-five people are going to the movies. Four people fit in each car. How many cars are needed to get all 25 people to the theater at the same time?
6.NS.B. 3

Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

6.EE.A. 3

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+$ $18 y$ to produce the equivalent expression 6 ($4 x$ $+3 y$); apply properties of operations to $y+y+$ y to produce the equivalent expression $3 y$.

6.EE.A. 4

Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and 3y are equivalent because they name the same number regardless of which number y stands for.

7.EE.A. 2

Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05."

7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).
7.EE.B. 3

Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10\% raise, she will make an additional 1/10 of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar 9 3/4 inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation
7.NS.A. 3

Solve real-world and mathematical problems involving the four operations with rational numbers.

$7^{\text {th }}$ Grade Standard	Previous Grade(s) Standards
7.EE.B. 4 Use variables to represent quantities in a realworld or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width? b. Solve word problems leading to inequalities of the form $p x+q>r, p x+q$ $\geq r, p x+q<r$ or $p x+q \leq r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.	6.EE.B. 6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 6.EE.B. 7 Solve real-world and mathematical problems by writing and solving equations and inequalities of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. Inequalities will include $<,>, \leq$, and \geq. 6.EE.B. 8 Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

$7^{\text {th }}$ Grade Standards Taught in Advance 7.NS.A. 3

Solve real-world and mathematical problems involving the four operations with rational numbers.

Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

$7^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$7^{\text {th }}$ Grade Standards Taught in Advance	Grade Standards Taught Concurrently
7.G.A. 1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	6.G.A. 1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems.	7.RP.A. 2 Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.	
7.G.A. 2 Draw (freehand, with ruler and protractor, or with technology) geometric shapes with given conditions. (Focus is on triangles from three measures of angles or sides, noticing when the conditions determine one and only one triangle, more than one triangle, or no triangle.			
7.G.A. 3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.			
7.G.B. 4 Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	6.G.A. 1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems.		

Use facts about supplementary,
complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

7.G.B. 6

Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. (Pyramids limited to surface area only.)
4.MD.C. 7

Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real-world and mathematical problems, e.g., by using an equation with a letter for the unknown angle measure.

6.G.A. 1

Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems. 6.G.A. 2

Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving realworld and mathematical problems.

6.G.A. 4

Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems. \qquad

7.SP.A. 1

Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

7.SP.A. 2

Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book: predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

6.SP.A. 1

Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.
6.SP.A. 2

Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

7.SP.C. 5

Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

7.SP.A. 1

Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

7.SP.B. 3

Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities using quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
5.NF.B. 4

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \times$ $q \div n$. For example, use a visual fraction model to show understanding, and create a story context for (m / n) x q.
b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [In general, $(m / n) \times(c / d)=(m c) /(n d)$.]
c. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

6.NS.A. 1

interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient, use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi? 6.SP.A. 1

Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am l?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.

$7^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$7^{\text {th }}$ Grade Standards Taught in Advance	$7^{\text {th }}$ Grade Standards Taught Concurrently
7.SP.B. 4 Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.		7.SP.A. 2 Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be. 7.SP.B. 3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities using quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.	
7.SP.C. 5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.			

$7^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$7^{\text {th }}$ Grade Standards Taught in Advance	$7^{\text {th }}$ Grade Standards Taught Concurrently
7.SP.C. 6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.		7.RP.A. 3 Use proportional relationships to solve multistep ratio and percent problems of simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, and percent error. 7.SP.C. 5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	
7.SP.C. 7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?		7.RP.A. 3 Use proportional relationships to solve multistep ratio and percent problems of simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, and percent error. 7.SP.C. 6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.	

7.SP.C. 8

Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.
c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?
7.RP.A. 3

Use proportional relationships to solve multistep ratio and percent problems of simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, and percent error.

7.SP.C. 7

Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible
sources of the discrepancy.
a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

