Grade 6 Learning Acceleration Guidance

Learning acceleration will ensure students have the skills they need to equitably access and practice on-grade level content. This chart is a reference guide for teachers to help them more quickly identify the specific prerequisite and co-requisite standards necessary for every Grade 6 math standard. Students should spend the large majority of their time on the major work of the grade (\square). Supporting work (\square) and, where appropriate, additional work (\square) can engage students in the major work of the grade.

$6^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$6^{\text {th }}$ Grade Standards Taught in Advance	$6^{\text {th }}$ Grade Standards Taught Concurrently
6.RP.A. 1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	4.OA.A. 2 Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison (Example: 6 times as many vs. 6 more than). 4.MD.A. 1 Know relative sizes of measurement units within one system of units including: $\mathrm{ft}, \mathrm{in} ; \mathrm{km}, \mathrm{m}, \mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}, \mathrm{oz} . ; \mathrm{l}$, $\mathrm{ml} ; \mathrm{hr}, \mathrm{min}, \mathrm{sec}$. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. (Conversions are limited to one-step conversions.) Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs $(1,12),(2,24),(3,36), \ldots$ 5.OA.B. 3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. 5.NF.B. 5 Interpret multiplication as scaling (resizing). a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case). c. Explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 . d. Relating the principle of fraction equivalence $a / b=$ $(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .		

$6^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$6^{\text {th }}$ Grade Standards Taught in Advance	$6^{\text {th }}$ Grade Standards Taught Concurrently
6.RP.A. 2 Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of \$5 per hamburger."	4.OA.A. 2 Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison (Example: 6 times as many vs. 6 more than). 5.NF.B. 3 Interpret a fraction as division of the numerator by the denominator ($a / b=a \div b$). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie? 5.NF.B. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. a. Interpret division of a unit fraction by a nonzero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$. b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div$ $(1 / 5)=20$ because $20 \times(1 / 5)=4$. c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?	6.RP.A. 1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	

Use ratio and rate reasoning to solve realworld and mathematical problems, e.g., by reasoning about tables of equivalent ratios tape diagrams, double number line diagrams or equations.
a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
b. Solve unit rate problems including those nvolving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what unit rate were lawns being mowed?
c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent.
d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities

$6^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$6^{\text {th }}$ Grade Standards Taught in Advance	$6^{\text {th }}$ Grade Standards Taught Concurrently
6.NS.A. 1 Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, (a/b) \div (c/d) $=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?	3.OA.B. 6 Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8. 5.NF.B. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for (1/3) $\div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$. b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$. c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?		
6.NS.B. 2 Fluently divide multi-digit numbers using the standard algorithm.	5.NBT.B. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, subtracting multiples of the divisor, and/or the relationship between multiplication and division. Illustrate and/or explain the calculation by using equations, rectangular arrays, area models, or other strategies based on place value.		

6.NS.B. 3

Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation

6.NS.B. 4

Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.
5.NBT.B. 5

Fluently multiply multi-digit whole numbers using the standard algorithm.

5.NBT.B. 6

Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, subtracting multiples of the divisor, and/or the relationship between multiplication and division. Illustrate and/or explain the calculation by using equations, rectangular arrays, area models, or other strategies based on place value.

5.NBT.B. 7

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; justify the reasoning used with a written explanation.

4.OA.B. 4

Using whole numbers in the range 1-100,
a. Find all factor pairs for a given whole number.
b. Recognize that a given whole number is a multiple of each of its factors.
c. Determine whether a given whole number is a multiple of a given one-digit number.
d. Determine whether a given whole number is prime or composite.

5.OA.A. 2

Write simple expressions that record calculations with whole numbers, fractions and decimals, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18,932+9.21)$ is three times as large as $18,932+9.21$, without having to calculate the indicated sum or product.

6.NS.B. 2

Fluently divide multi-digit numbers using the standard algorithm.
6.NS.C. 5

Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

6.NS.C. 6

Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.
b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.

3.NF.A. 2

Understand a fraction with denominators 2 ,
$3,4,6$, and 8 as a number on the number line; represent fractions on a number line diagram.
a. Represent a fraction $1 / \mathrm{b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line.
b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.

5.G.A. 1

Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number in the ordered pair indicates how far to travel from the origin in the direction of one axis, and the second number in the ordered pair indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).

6.NS.C. 5

Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
6.NS.C. 7

Understand ordering and absolute value of rational numbers.
a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
b. Write, interpret, and explain statements of order for rational numbers in realworld contexts. For example, write $-3^{\circ} \mathrm{C}$ $>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.
c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $|-30|=30$ to describe the size of the debt in dollars.
d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than - 30 dollars represents a debt greater than 30 dollars.

6.NS.C. 8

Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

Previous Grade(s) Standards	

6.G.A. 3

Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
6.EE.A. 1

Write and evaluate numerical expressions involving whole-number exponents.
4.OA.B. 4

Using whole numbers in the range $1-100$,
a. Find all factor pairs for a given whole number.
b. Recognize that a given whole number is a multiple of each of its factors.
c. Determine whether a given whole number is a multiple of a given one-digit number.
d. Determine whether a given whole number is prime or composite.

5.NBT.A. 2

Explain and apply patterns in the number of zeros of the product when multiplying a number by powers of 10 . Explain and apply patterns in the values of the digits in the product or the quotient, when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 . For example, $10^{0}=1,10^{1}=10 \ldots$ and $2.1 \times 10^{2}=210$.
6.EE.A. 2

Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y.
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.
5.OA.A. 2 exite simple expessions that record calculations with whole numbers, fractions and decimals, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18,932+9.21)$ is three times as large as $18,932+9.21$, without having to calculate the indicated sum or product.

5.OA.B. 3

Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

$6^{\text {th }}$ Grade Standard
6.EE.A. 3
Apply the properties of operations to
generate equivalent expressions. For
example, apply the distributive property to
the expression $3(2+x)$ to produce the
equivalent expression $6+3 x$; apply the
distributive property to the expression $24 x+$
18y to produce the equivalent expression 6 ($4 x$
+ 3y); apply properties of operations to $y+y+$
y to produce the equivalent expression $3 y$.

6.EE.A. 3
propertes of operations to nerate equivalent expressions. For the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+$ produce the equivalent expression 6 (4x $+3 y$); apply properties of operations to $y+y+$ y to produce the equivalent expression $3 y$.
1.OA.B. 3
Apply properties of operations to add and subtract. Examples: If $8+3=11$ is known, then $3+8=11$ is also known. (Commutative property of addition.) To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=12$. (Associative property of addition.)

3.OA.B. 5

Apply properties of operations as strategies to multiply and divide. ${ }^{2}$ Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times$ 5×2 can be found by $3 \times 5=15$, then $15 \times 2=$ 30 , or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=$ $40+16=56$. (Distributive property.)

5.OA.A. 2

Write simple expressions that record calculations with whole numbers, fractions and decimals, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18,932+9.21)$ is three times as large as $18,932+9.21$, without having to calculate the indicated sum or product.

6.NS.B. 4

Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.

6.EE.A. 2

Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.

6.EE.A.

Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+$ y and $3 y$ are equivalent because they name the same number regardless of which number y stands for

6.EE.A.4 $6{ }^{\text {th }}$ Grade Standard
Identify when two expressions are equivalent
(i.e., when the two expressions name the
same number regardless of which value is
substituted into them). For example, the
expressions $y+y+y$ and 3y are equivalent
because they name the same number
regardless of which number y stands for.

1.OA.B. 3
Apply properties of operations to add and subtract. Examples: If $8+3=11$ is known, then $3+8=11$ is also known. (Commutative property of addition.) To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=12$. (Associative property of addition.)

3.OA.B. 5

Apply properties of operations as strategies to multiply and divide. ${ }^{2}$ Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times$ 5×2 can be found by $3 \times 5=15$, then $15 \times 2=$ 30 , or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=$ $40+16=56$. (Distributive property.)

5.OA.A. 2

Write simple expressions that record calculations with whole numbers, fractions and decimals, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18,932+9.21)$ is three times as large as $18,932+9.21$, without having to calculate the indicated sum or product.

6.NS.B. 4

Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.

6.EE.A. 2

Write, read, and evaluate expressions in
which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5 - y
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.

6.EE.A.

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$ apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression 6 ($4 x+3 y$); apply properties of operations to $y+y$ $+y$ to produce the equivalent expression $3 y$.

$6^{\text {th }}$ Grade Standard	Previous Grade(s) Standards	$6^{\text {th }}$ Grade Standards Taught in Advance	$6^{\text {th }}$ Grade Standards Taught Concurrently
6.EE.B. 5 Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.		6.EE.A. 2 Write, read, and evaluate expressions in which letters stand for numbers. a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y. b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms. c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	6.EE.B. 7 Solve real-world and mathematical problems by writing and solving equations and inequalities of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. Inequalities will include $<,>, \leq$, and \geq. 6.EE.B. 8 Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a realworld or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

6.EE.B. 6

Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y.
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.
6.EE.B. 7

Solve real-world and mathematical problems by writing and solving equations and inequalities of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. Inequalities will include $<,>, \leq$, and \geq.

	$6^{\text {th }}$ Grade Standard
	6.EE.B. 7 Solve real-world and mathematical problems by writing and solving equations and inequalities of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. Inequalities will include $<,>, \leq$, and \geq.

A.NF.A. 1 and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=$ $8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=$ ($a d+b c$)/bd.)

5.NF.B. 4

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \times q \div n$. For example, use a visual fraction model to show understanding, and create a story context for (m / n) x q.
b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [In general, $(m / n) \times(c / d)=(m c) /(n d)$.
c. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
6.NS.A. 1

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, (a/b) \div (c/d) = ad/bc.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?
6.EE.B. 5

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

6.EE.B. 6

Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

6.EE.C. 9

Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the relationship between distance and time.

6.EE.B. 5

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
6.EE.C. 9

Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65$ to represent the relationship between distance and time.

5.OA.B. 3

Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.
6.EE.B. 7

Solve real-world and mathematical problems by writing and solving equations and inequalities of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. Inequalities will include $<,>, \leq$, and \geq.
6.G.A. 1

Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems.
4.MD.A. 3

Apply the area and perimeter formulas for rectangles in real-world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.

4.MD.D. 8

Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real-world problems. 5.NF.B. 4

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(m / n) \times q$ as m parts of a partition of q into n equal parts; equivalently, as the result of a sequence of operations, $m \times q \div n$. For example, use a visual fraction model to show understanding, and create a story context for (m / n) x q.
b. Construct a model to develop understanding of the concept of multiplying two fractions and create a story context for the equation. [In general, $(m / n) \times(c / d)=(m c) /(n d)$.]
c. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths.
d. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

$6^{\text {th }}$ Grade Standard
6.G.A. 2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving realworld and mathematical problems.

Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction olying th same as would be found by multiplying formulas $V=I w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving realworld and mathematical problems.

6.G.A. 3

in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with same first coordinate or the same second coordinate. Apply these techniques in the
maxt of solving reald

6.G.A. 4

, ets made up of rectangles and triangles, and use the nets to find the surface area of these of solving real-world and mathematical
problems.
5.MD.C. 5

Relate volume to the operations of multiplication and addition and solve realworld and mathematical problems involving volume.
a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
b. Apply the formulas $V=I \times w \times h$ and $V=$ $b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems.
c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems

5.G.A. 2

Represent real-world and mathematica problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

6.NS.C. 8

Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

6.G.A. 1

Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems.

6.SP.A. 1

Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am l?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.

6.SP.A. 2

Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

6.SP.A. 3

Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
6.SP.A. 3
Recognize that a measure of center for a
numerical data set summarizes all of its
values with a single number, while a measure
of variation describes how its values vary with
a single number.
5.MD.B. 2

Make a line plot to display a data set of measurements in fractions of a unit $(1 / 2,1 / 4$, $1 / 8)$. Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

5.MD.B. 2

Make a line plot to display a data set of measurements in fractions of a unit $(1 / 2,1 / 4$, $1 / 8)$. Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

6.SP.A. 1

Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students'ages.
6.SP.A. 2

Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
6.SP.B. 4

Display numerical data in plots on a number line, including dot plots, histograms, and box plots.

6.SP.B. 5

Summarize numerical data sets in relation to their context, such as by
a. Reporting the number of observations.
b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.
5.MD.B. 2

Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, $1 / 8)$. Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.
6.SP.A. 2

Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

6.SP.A. 3

Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.

6.SP.B. 5

Summarize numerical data sets in relation to their context, such as by:
a. Reporting the number of observations.
b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement
c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

6.SP.B. 4

Display numerical data in plots on a number line, including dot plots, histograms, and box plots.

