

Algebra II Learning Acceleration Guidance

Learning acceleration will ensure students have the skills they need to equitably access and practice on-grade level content. This chart is a reference guide for teachers to help them more quickly identify the specific prerequisite and co-requisitestandards necessary for every Algebra II standard. Students should spend the large majority of their time on the major work of the grade (\blacksquare). Supporting work (\blacksquare) and, where appropriate, additional work (\blacksquare) can engage students in the major work of the grade.

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: N-RN.A.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.	8.EE.A.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^2 \times 3^{-5} = 3^{-3} =$ $1/3^3 = 1/27$. 8.EE.A.2 Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.		
A2: N-RN.A.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.		A2: N-RN.A.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.	
A2: N-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.	A1: N-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. A1: N-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.		

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: N-CN.A.1 Know there is a complex number <i>i</i> such that $i^2 = -1$, and every complex number has the form <i>a</i> + <i>bi</i> with <i>a</i> and <i>b</i> real.	8.EE.A.2 Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.		A2: N-CN.A.2 Use the relation <i>i</i> ² = -1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
A2: N-CN.A.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	7.EE.A.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients to include multiple grouping symbols (e.g., parentheses, brackets, and braces).		A2: N-CN.A.1 Know there is a complex number <i>i</i> such that $i^2 = -1$, and every complex number has the form $a + bi$ with <i>a</i> and <i>b</i> real.
A2: N-CN.C.7 Solve quadratic equations with real coefficients that have complex solutions.		A2: N-CN.A.1 Know there is a complex number <i>i</i> such that $i^2 = -1$, and every complex number has the form $a + bi$ with a and b real. A2: N-CN.A.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	
A2: A-SSE.A.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	 A1: A-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)ⁿ as the product of P and a factor not depending on P. A1: A-SSE.A.2 Use the structure of an expression to identify ways to rewrite it. For example, see x⁴ - y⁴ as (x²)² - (y²)², or see 2x² + 8x as (2x)(x) + 2x(4), thus recognizing it as a polynomial whose terms are products of monomials and the polynomial can be factored as 2x(x+4). 		

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: A-SSE.B.3	A1: A-SSE.B.3	A2: A-SSE.A.2	
Choose and produce an equivalent form of an	Choose and produce an equivalent form of an	Use the structure of an expression to identify	
expression to reveal and explain properties of	expression to reveal and explain properties of	ways to rewrite it. <i>For example, see x</i> ⁴ - y ⁴ as	
the quantity represented by the expression.	the quantity represented by the expression.	$(x^2)^2 - (y^2)^2$, thus recognizing it as a difference	
c. Use the properties of exponents to	a. Factor a quadratic expression to reveal	of squares that can be factored as $(x^2 - y^2)(x^2 +$	
transform expressions for exponential	the zeros of the function it defines.	<i>y</i> ²).	
functions. For example, the expression	b. Complete the square in a quadratic		
1.15 ^t can be rewritten as $(1.15^{1/12})^{12t} ≈$	expression to reveal the maximum or		
1.012 ^{12t} to reveal the approximate	minimum value of the function it		
equivalent monthly interest rate if the	defines.		
annual rate is 15%.	c. Use the properties of exponents to		
	transform expressions for exponential		
	functions emphasizing integer		
	exponents. For example, the growth of		
	bacteria can be modeled by either $f(t) = 2^{(t+2)}$ or $g(t) = 0^{(2t)}$ because the		
	$3^{(t+2)}$ of $y(t) = 9(3^t)$ because the		
	(2t)(22) = Q(2t)		
Α2. Α SSE D 4	(3)(3) - 3(3).		
Apply the formula for the sum of a finite		Choose and produce an equivalent form of an	
geometric series (when the common ratio is		expression to reveal and explain properties of	
not 1), and use the formula to solve		the quantity represented by the expression.	
problems. For example, calculate mortagae		c. Use the properties of exponents to	
payments.		transform expressions for exponential	
<i>p</i> = <i>y</i>		functions. For example the expression	
		1.15 ^t can be rewritten as $(1.15^{1/12})^{12t}$ ≈	
		1.012 ^{12t} to reveal the approximate	
		equivalent monthly interest rate if the	
		annual rate is 15%.	
A2: A-APR.B.2	A1: A-SSE.B.3	A2: A-APR.B.3	A2: A-APR.D.6
Know and apply the Remainder Theorem: For	Choose and produce an equivalent form of an	Identify zeros of polynomials when suitable	Rewrite simple rational expressions in different
a polynomial $p(x)$ and a number a , the	expression to reveal and explain properties of	factorizations are available, and use the zeros	forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$,
remainder on division by $x - a$ is $p(a)$, so $p(a) =$	the quantity represented by the expression.	to construct a rough graph of the function	where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials
0 if and only if $(x - a)$ is a factor of $p(x)$.	d. Factor a quadratic expression to reveal	defined by the polynomial.	with the degree of <i>r</i> (<i>x</i>) less than the degree
	the zeros of the function it defines.		of <i>b</i> (<i>x</i>), using inspection, long division, or, for
	e. Complete the square in a quadratic		the more complicated examples, a computer
	expression to reveal the maximum or		algebra system.
	minimum value of the function it		
	defines.		
	f. Use the properties of exponents to		
	functions omphasizing integer		
	runctions emphasizing integer		
	exponents. For example, the growth of		
	bucteria can be modeled by either $f(t) = 2(t+2)$ or $a(t) = 0(2t)$ because the		
	$S^{(1)}$ or $y(t) = y(s^{*})$ because the		
	$(2t)/(2^2) = O(2t)$		
	(5')(5') = 9(5').		

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
Ageora in Standard A2: A-APR.B.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	 A1: A-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions emphasizing integer exponents. For example, the growth of bacteria can be modeled by either f(t) = 3^(t+2) or g(t) = 9(3^t) because the expression 3^(t+2) can be rewritten as (3^t)(3²) = 9(3^t). A1: A-APR.B.3 Identify zeros of quadratic functions, and use the zeros to sketch a graph of the function 	Agebra in Standards Taught in Advance A2: A-SSE.A.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	
A2: A-APR.C.4		A2: A-SSE.A.2	
Use polynomial identities and use them to		Use the structure of an expression to identify	
describe numerical relationships. For		ways to rewrite it. For example, see $x^4 - y^4$ as	
example, the polynomial identity $(x^2 + y^2)^2 =$		$(x^2)^2 - (y^2)^2$, thus recognizing it as a difference	
(x² - y²)² + (2xy)² can be used to generate Pythagorean triples.		of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: A-APR.D.6	7.NS.A.2	A2: A-SSE.A.2	A2: A-APR.B.2
Rewrite simple rational expressions in	Apply and extend previous understandings of	Use the structure of an expression to identify	Know and apply the Remainder Theorem: For a
different forms; write $a(x)/b(x)$ in the form $q(x)$	multiplication and division and of fractions to	ways to rewrite it. For example, see $x^4 - y^4$ as	polynomial $p(x)$ and a number a , the remainder
+r(x)/b(x), where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are	multiply and divide rational numbers.	$(x^2)^2 - (y^2)^2$, thus recognizing it as a difference	on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only
polynomials with the degree of <i>r</i> (<i>x</i>) less than	a. Understand that multiplication is	of squares that can be factored as $(x^2 - y^2)(x^2 +$	if $(x - a)$ is a factor of $p(x)$.
the degree of <i>b</i> (<i>x</i>), using inspection, long	extended from fractions to rational	<i>y</i> ²).	
division, or, for the more complicated	numbers by requiring that operations		
examples, a computer algebra system.	continue to satisfy the properties of		
	operations, particularly the distributive		
	property, leading to products such as (-		
	1)(-1) = 1 and the rules for multiplying		
	rational numbers by describing real-		
	world contexts		
	h Understand that integers can be divided		
	provided that the divisor is not zero, and		
	every quotient of integers (with non-zero		
	divisor) is a rational number.		
	If p and q are integers, then $-(p/q) = (-$		
	p)/q = p/(-q). Interpret quotients of		
	rational numbers by describing real-		
	world contexts.		
	c. Apply properties of operations as		
	strategies to multiply and divide rational		
	numbers.		
	d. Convert a rational number to a decimal		
	using long division; know that the		
	decimal form of a rational number		
	terminates in us or eventually repeats.		

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: A-CED.A.1	A1: A-CED.A.1		A2: A-RELA.1
Create equations and inequalities in one	Create equations and inequalities in one		Explain each step in solving an equation as
variable and use them to solve problems.	variable and use them to solve problems.		following from the equality of numbers asserted
Include equations arising from linear and	Include equations arising from linear,		at the previous step, starting from the
quadratic functions, and simple rational and	quadratic, and exponential functions.		assumption that the original equation has a
exponential functions.	A1: A-REI.B.4		solution. Construct a viable argument to justify a
	Solve quadratic equations in one variable.		solution method.
	a. Use the method of completing the		
	square to transform any quadratic		
	equation in x into an equation of the		
	form $(x - p)^2 = q$ that has the same		
	solutions. Derive the quadratic formula		
	from this form.		
	b. Solve quadratic equations by inspection		
	(e.g., for $x^2 = 49$), taking square roots,		
	completing the square, the quadratic		
	formula and factoring, as appropriate to		
	the initial form of the equation.		
	Recognize when the quadratic formula		
	gives complex solutions and write them		
AZ. A-RELA.I	AL A-NELALI Explain each stop in solving a simple equation		AZ. A-CED.A.I
following from the equality of numbers	as following from the equality of numbers		variable and use them to solve problems
asserted at the previous step starting from	asserted at the previous step, starting from		Include equations arising from linear and
the assumption that the original equation has	the assumption that the original equation has		auadratic functions and simple rational and
a solution. Construct a viable argument to	a solution. Construct a viable argument to		exponential functions.
iustify a solution method.	iustify a solution method.		
A2: A-REI.A.2	····	A2: A-REI.A.1	
Solve simple rational and radical equations in		Explain each step in solving an equation as	
one variable, and give examples showing how		following from the equality of numbers	
extraneous solutions may arise.		asserted at the previous step, starting from	
		the assumption that the original equation has	
		a solution. Construct a viable argument to	
		justify a solution method.	

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
 A2: A-REI.B.4 Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for x² = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b. 	 A1: A-REI.B.4 Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in <i>x</i> into an equation of the form (x - p)² = q that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for x² = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as "no real solution." 		
A2: A-REI.C.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), limited to systems of at most three equations and three variables. With graphic solutions, systems are limited to two variables.	A1: A-REI.C.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.		A2: A-RELD.11 Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
A2: A-REI.C.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.		A2: A-REI.C.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), limited to systems of at most three equations and three variables. With graphic solutions, systems are limited to two variables.	A2: A-REI.D.11 Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Algebra II Standard

A2: A-REI.D.11

Explain why the *x*-coordinates of the points where the graphs of the equations y = f(x)and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

A2: F-IF.B.4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*

Previous Grade(s) Standards

A1: A-REI.D.11

Explain why the *x*-coordinates of the points where the graphs of the equations y = f(x)and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, piecewise linear (to include absolute value), and exponential functions.

A1: N-Q.A.1

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

A1: F-IF.A.1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If *f* is a function and *x* is an element of its domain, then f(x) denotes the output of *f* corresponding to the input *x*. The graph of *f* is the graph of the equation y = f(x).

A1: F-IF.B.4

For linear, piecewise linear (to include absolute value), quadratic, and exponential functions that model a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior.*

Algebra II Standards Taught in Advance

Algebra II Standards Taught Concurrently A2: A-REI.C.6

Solve systems of linear equations exactly and approximately (e.g., with graphs), limited to systems of at most three equations and three variables. With graphic solutions, systems are limited to two variables.

A2: A-REI.C.7

Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = -3x and the circle $x^2 + y^2 = 3$.

A2: F-BF.A.1

Write a function that describes a relationship between two quantities.

- a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
- b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.

A2: F-IF.C.7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

- Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
- c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
- e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: F-IF.B.6	A1: F-IF.A.2		
Calculate and interpret the average rate of	Use function notation, evaluate functions for		
change of a function (presented symbolically	inputs in their domains, and interpret		
or as a table) over a specified interval.	statements that use function notation in		
Estimate the rate of change from a graph.	terms of a context.		
	A1: F-IF.B.6		
	Calculate and interpret the average rate of		
	change of a linear, quadratic, piecewise linear		
	(to include absolute value), and exponential		
	function (presented symbolically or as a table)		
	over a specified interval. Estimate the rate of		
	change from a graph.		
A2: F-IF.C.7	A1: A-APR.B.3		A2: F-IF.B.4
Graph functions expressed symbolically and	Identify zeros of quadratic functions, and use		For a function that models a relationship
show key features of the graph, by hand in	the zeros to sketch a graph of the function		between two quantities, interpret key features
simple cases and using technology for more	defined by the polynomial.		of graphs and tables in terms of the quantities,
complicated cases.	A1: F-IF.A.1		and sketch graphs showing key features given a
b. Graph square root, cube root, and	Understand that a function from one set		verbal description of the relationship. Key
piecewise-defined functions, including	(called the domain) to another set (called the		features include: intercepts; intervals where the
step functions and absolute value	range) assigns to each element of the domain		function is increasing, decreasing, positive, or
functions.	exactly one element of the range. If <i>f</i> is a		negative; relative maximums and minimums;
c. Graph polynomial functions, identifying	function and x is an element of its domain,		symmetries; end behavior; and periodicity.
zeros when suitable factorizations are	then <i>f</i> (<i>x</i>) denotes the output of <i>f</i>		A2: F-IF.C.8
available, and showing end behavior.	corresponding to the input <i>x</i> . The graph of <i>f</i> is		Write a function defined by an expression in
e. Graph exponential and logarithmic	the graph of the equation $y = f(x)$.		different but equivalent forms to reveal and
functions, showing intercepts and end	A1: F-IF.C.7		explain different properties of the function.
behavior, and trigonometric functions,	Graph functions expressed symbolically and		Use the properties of exponents to interpret
showing period, midline, and amplitude.	show key features of the graph, by hand in		expressions for exponential functions. For
	simple cases and using technology for more		example, identify percent rate of change in
	complicated cases.		functions such as y = (1.02) ^t , y = (0.97) ^t , y =
	a. Graph linear and quadratic functions and		$(1.01)12^{t}$, y = $(1.2)^{t}/10$, and classify them as
	show intercepts, maxima, and minima.		representing exponential growth or decay.
	b. Graph piecewise linear (to include		A2: F-BF.B.3
	absolute value) and exponential		Identify the effect on the graph of replacing $f(x)$
	functions.		by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific
	A1: F-IF.C.8		values of k (both positive and negative); find the
	Write a function defined by an expression in		value of k given the graphs. Experiment with
	different but equivalent forms to reveal and		cases and illustrate an explanation of the effects
	explain different properties of the function.		on the graph using technology. Include
	a. Use the process of factoring and		recognizing even and odd functions from their
	completing the square in a quadratic		graphs and algebraic expressions for them.
	function to show zeros, extreme values,		
	and symmetry of the graph, and		
	interpret these in terms of a context.		

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
 A2: F-IF.C.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)12^t, y = (1.2)^t/10, and classify them as representing exponential growth or decay. 	 A1: F-IF.C.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. 	A2: N-RN.A.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.	 A2: F-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. A2: F-BF.B.3 Identify the effect on the graph of replacing <i>f</i>(<i>x</i>) by <i>f</i>(<i>x</i>) + <i>k</i>, <i>k f</i>(<i>x</i>), <i>f</i>(<i>kx</i>), and <i>f</i>(<i>x</i> + <i>k</i>) for specific values of <i>k</i> (both positive and negative); find the value of <i>k</i> given the graphs. Experiment with cases and illustrate an explanation of the effects on their graphs and algebraic expressions for them.
A2: F-IF.C.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, determine which has the larger maximum.	A1: F-IF.C.9 Compare properties of two functions (linear, quadratic, piecewise linear [to include absolute value] or exponential) each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, determine which has the larger maximum.	A2: F-IF.B.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
 A2: F-BF.A.1 Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. 	 A1: F-BF.A.1 Write a linear, quadratic, or exponential function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. 		A2: F-IF.B.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key</i> <i>features include: intercepts; intervals where the</i> <i>function is increasing, decreasing, positive, or</i> <i>negative; relative maximums and minimums;</i> <i>symmetries; end behavior; and periodicity.</i> A2: F-LE.A.2 Given a graph, a description of a relationship, or two input-output pairs (include reading these from a table), construct linear and exponential functions, including arithmetic and geometric sequences to solve multistep problems.
A2: F-BF.A.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.		 A2: F-BF.A.1 Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. 	A2: F-LE.A.2 Given a graph, a description of a relationship, or two input-output pairs (include reading these from a table), construct linear and exponential functions, including arithmetic and geometric sequences to solve multistep problems.

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: F-BF.B.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	A1: F-BF.B.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative). Without technology, find the value of k given the graphs of linear and quadratic functions. With technology, experiment with cases and illustrate an explanation of the effects on the graph that include cases where $f(x)$ is a linear, quadratic, piecewise linear (to include absolute value) or exponential function.		 A2: F-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. b. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. A2: F-IF.C.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)12^t, y = (1.2)^t/10, and classify them as representing exponential growth or decay.
A2: F-BF.B.4 Find inverse functions. a. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ or $f(x) = (x+1)/(x-1)$ for $x \neq 1$.		A2: A-REI.A.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: F-LE.A.2	A1: F-LE.A.1		A2: F-BF.A.1
Given a graph, a description of a relationship,	Distinguish between situations that can be		Write a function that describes a relationship
or two input-output pairs (include reading	modeled with linear functions and with		between two quantities.
these from a table), construct linear and	exponential functions.		a. Determine an explicit expression, a
exponential functions, including arithmetic	a. Prove that linear functions grow by equal		recursive process, or steps for calculation
and geometric sequences to solve multistep	differences over equal intervals, and that		from a context.
problems.	exponential functions grow by equal		b. Combine standard function types using
	h Becognize situations in which one		function that models the temperature of a
	quantity changes at a constant rate per		cooling body by adding a constant function
	unit interval relative to another.		to a decaving exponential, and relate these
	c. Recognize situations in which a quantity		functions to the model.
	grows or decays by a constant percent		A2: F-BF.A.2
	rate per unit interval relative to another.		Write arithmetic and geometric sequences both
	A1: F-LE.A.2		recursively and with an explicit formula, use
	Construct linear and exponential functions,		them to model situations, and translate
	including arithmetic and geometric		between the two forms.
	sequences, given a graph, a description of a		
	(include reading these from a table)		
A2: F-I F.A.4		A2: A-SSE B.3	
For exponential models, express as a		Choose and produce an equivalent form of an	
logarithm the solution to $ab^{ct} = d$ where a, c, d		expression to reveal and explain properties of	
and <i>d</i> are numbers and the base <i>b</i> is 2, 10,		the quantity represented by the expression.	
or <i>e</i> ; evaluate the logarithm using technology.		c. Use the properties of exponents to	
		transform expressions for exponential	
		functions. For example, the expression	
		1.15° cuil be rewritten us $(1.15^{2/2})^{1/2} \approx$ 1.012 ^{12t} to reveal the approximate	
		equivalent monthly interest rate if the	
		annual rate is 15%.	
		A2: F-IF.C.8	
		Write a function defined by an expression in	
		different but equivalent forms to reveal and	
		explain different properties of the function.	
		b. Use the properties of exponents to	
		functions. For example identify percent	
		rate of change in functions such as y =	
		$(1.02)^t$, y = $(0.97)^t$ y = $(1.01)12^t$ y =	
		$(1.2)^{t}/10$, and classify them as	
		representing exponential growth or	
		decay.	

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: F-LE.B.5 Interpret the parameters in a linear or exponential function in terms of a context.	A1: F-LE.B.5 Interpret the parameters in a linear or exponential function in terms of a context.	 A2: F-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. A2: F-LE.A.2 Given a graph, a description of a relationship, or two input-output pairs (include reading these from a table), construct linear and exponential functions, including arithmetic and geometric sequences to solve multistep problems. 	
A2: F-TF.A.1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	GM: G-C.B.5 Use similarity to determine that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.		
A2: F-TF.A.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	GM: G-SRT.C.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. GM: G-GPE.A.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	A2: F-TF.A.1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: F-TF.B.5		A2: F-BF.B.3	
Choose trigonometric functions to model		Identify the effect on the graph of	
periodic phenomena with specified		replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$,	
amplitude, frequency, and midline.		and <i>f</i> (<i>x</i> + <i>k</i>) for specific values of <i>k</i> (both	
		positive and negative); find the value	
		of <i>k</i> given the graphs. Experiment with cases	
		and illustrate an explanation of the effects on	
		the graph using technology. Include	
		recognizing even and odd functions from their	
		graphs and algebraic expressions for them.	
A2: F-TF.C.8		A2: F-TF.A.2	
Prove the Pythagorean identity sin ² (θ) +		Explain how the unit circle in the coordinate	
$\cos^{2}(\theta) = 1$ and use it to find $\sin(\theta)$, $\cos(\theta)$, or		plane enables the extension of trigonometric	
$tan(\theta)$ given $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ and the		functions to all real numbers, interpreted as	
quadrant of the angle.		radian measures of angles traversed	
		counterclockwise around the unit circle.	
A2: S-ID.A.4	6.SP.B.5		
Use the mean and standard deviation of a	Summarize numerical data sets in relation to		
data set to fit it to a normal distribution and	their context, such as by:		
to estimate population percentages.	a. Reporting the number of observations.		
Recognize that there are data sets for which	b. Describing the nature of the attribute		
such a procedure is not appropriate. Use	under investigation, including how it was		
calculators, spreadsheets, and tables to	measured and its units of measurement.		
estimate areas under the normal curve	c. Giving quantitative measures of center		
	(median and/or mean) and variability		
	(interquartile range), as well as		
	describing any overall pattern and any		
	striking deviations from the overall		
	pattern with reference to the context in		
	which the data were gathered.		
	d. Relating the choice of measures of		
	center and variability to the shape of the		
	data distribution and the context in		
	which the data were gathered.		
	A1: S-ID.A.2		
	Use statistics appropriate to the shape of the		
	data distribution to compare center (median,		
	mean) and spread (interquartile range,		
	standard deviation) of two or more different		
	data sets.		

Algebra II Standard	Previous Grade(s) Standar <u>ds</u>	Algebra II Standards Taught in A <u>dvance</u>	Algebra II Standards Taught Concurrently
A2: S-ID.B.6	A1: S-ID.B.6	A2: F-BF.A.1	
Represent data on two quantitative variables	Represent data on two quantitative variables	Write a function that describes a relationship	
on a scatter plot, and describe how the	on a scatter plot, and describe how the	between two quantities.	
variables are related.	variables are related.	a. Determine an explicit expression, a	
a. Fit a function to the data; use functions	a. Fit a function to the data; use functions	recursive process, or steps for	
fitted to data to solve problems in the	fitted to data to solve problems in the	calculation from a context.	
context of the data. Use given functions	context of the data. Use given functions	b. Combine standard function types using	
or choose a function suggested by the	or choose a function suggested by the	arithmetic operations. For example, build	
context. Emphasize exponential models.	models	of a cooling body by adding a constant	
	h Informally assess the fit of a function by	function to a decaying exponential and	
	nlotting and analyzing residuals	relate these functions to the model	
	c. Fit a linear function for a scatter plot that	A2: F-LE.A.2	
	suggests a linear association.	Given a graph, a description of a relationship,	
		or two input-output pairs (include reading	
		these from a table), construct linear and	
		exponential functions, including arithmetic	
		and geometric sequences to solve multistep	
		problems.	
A2: S-IC.A.1	7.SP.A.2		
Understand statistics as a process for making	Use data from a random sample to draw		
inferences about population parameters	inferences about a population with an		
based on a random sample from that	unknown characteristic of interest. Generate		
population.	multiple samples (or simulated samples) of		
	estimates or predictions. For example		
	estimates of predictions. For example,		
	randomly sampling words from the book:		
	predict the winner of a school election based		
	on randomly sampled survey data. Gauge		
	how far off the estimate or prediction might		
	be.		

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: S-IC.A.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?	 7.SP.C.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies? 		
A2: S-IC.B.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.		A2: S-IC.A.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	
A2: S-IC.B.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.		A2: S-IC.A.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? A2: S-IC.B.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	

Algebra II Standard	Previous Grade(s) Standards	Algebra II Standards Taught in Advance	Algebra II Standards Taught Concurrently
A2: S-IC.B.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.		A2: S-IC.A.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? A2: S-IC.B.3	
		Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	
A2: S-IC.B.6 Evaluate reports based on data.		A2: S-IC.B.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. A2: S-IC.B.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.	