Engineering and the Louisiana Science Standards

Armetta Wright, NBCT
Magnolia Woods STEM teacher/leader

Maricel Salvacion
EBRPSS K-5 STEM Specialist

Objectives:

- ☐ Introduce the new Louisiana Science and Engineering practices.
- ☐ Demonstrate how to incorporate engineering practices into a lesson plan based on the new standards.
- ☐ Give participants an opportunity to create a lesson plan that incorporates engineering practices based on the new standards.

Rate your knowledge of Engineering Practices in the New Louisiana Science Standards

	I understand and could explain the topic to others.	4
	I understand and can work on my own.	3
	I understand but I still need a little help.	2
(1)	I am finding this tricky.	1

Science and Engineering Practices in the New Louisiana Science Standards

- 1. Asking questions (science) and defining problems (engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematical and computational thinking
- 6. Constructing explanations (science) and designing solutions

(engineering)

- 7. Engaging in argument with evidence
- 8. Obtaining, evaluating, and communicating information

- ➤ Start with a Disciplinary Core Idea (engineering challenges should be a part of a larger unit)
- > Engage Students by Introducing Problem
- > Build Science Content Knowledge
- Use Engineering Challenge to Apply Knowledge

> Start with a Disciplinary Core Idea(s)

NATURAL HAZARDS

A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (UE.ESS3B.a)

DEVELOPING POSSIBLE SOLUTIONS

Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (ETS.UE.1B.a)

- ➤ Start with a Disciplinary Core Idea (engineering challenges should be a part of a larger unit)
- Engage Students by Introducing Problem
- > Build Science Content Knowledge
- > Use Engineering Challenge to Apply Knowledge

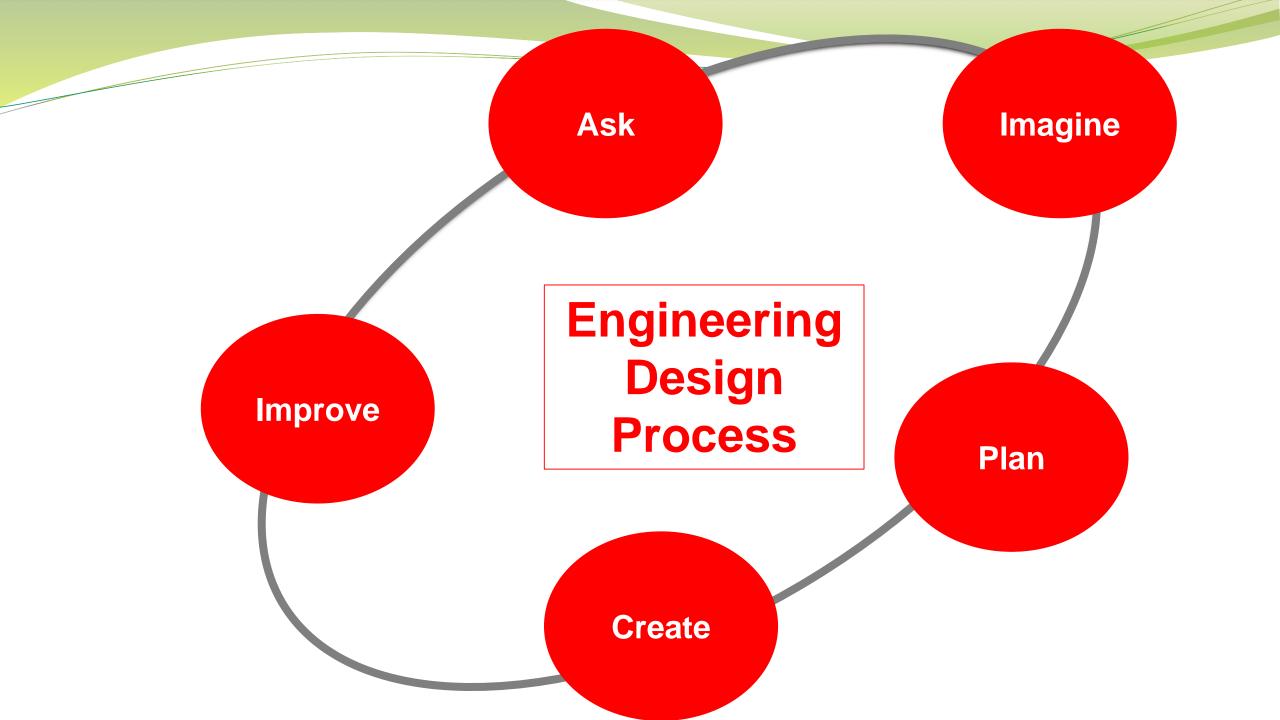
Engage Students by Introducing Problem

Discuss at your table:

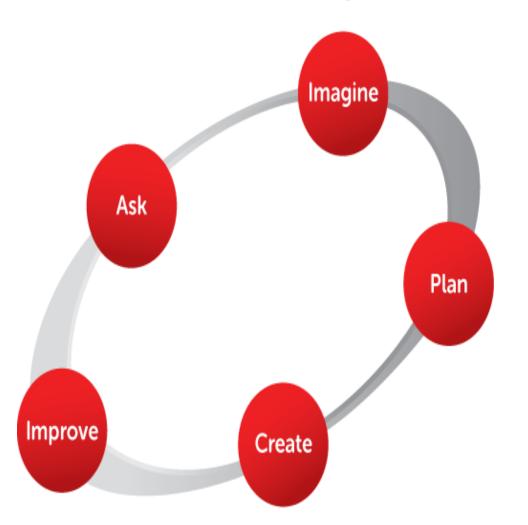
- What do you think caused the damage seen in pictures?
- What causes the natural hazard responsible for damage?
- What do you know about those natural hazards?
- ☐ Could anything have been done to minimize the damage?

- ➤ Start with a Disciplinary Core Idea (engineering challenges should be a part of a larger unit)
- > Engage Students by Introducing Problem
- **>** Build Science Content Knowledge
- > Use Engineering Challenge to Apply Knowledge

> Build Content Knowledge


- ☐ Provide instruction relating to disciplinary core idea
- Goal of instruction is for students to master content
- ☐ Mastery of content will be demonstrated through engineering design challenge

- ➤ Start with a Disciplinary Core Idea (engineering challenges should be a part of a larger unit)
- > Engage Students by Introducing Problem
- > Build Science Content Knowledge
- ➤ <u>Use Engineering Challenge to Apply Knowledge</u>


- >Use Engineering Challenge to Apply Knowledge
 - Introduce design challenge and criteria
 - Design and create.
 - Identify steps of Engineering Design process
 - Present and evaluate designs

- ➤ Design Challenge
 - ☐ <u>Criteria</u>: Develop a roofing system for a house that can prevent water from entering.
 - ☐ Constraints: Time, Materials
 - Evaluation: Measuring amount of water that entered
 - ☐ <u>Variations</u>: Assign cost to materials, Amount of water, Pressure of

water

Engineering Design Process

ASK: What is the problem? What do we already know (*content knowledge*)? What are our constraints?

IMAGINE: What are some solutions? Brainstorm ideas. Choose the best one.

PLAN: Draw a diagram. Make a list of supplies.

CREATE: Follow your plan. Test your design.

IMPROVE: What works? What doesn't? Modify your design to make it better.

Challenges with Challenges

TEACHERS	STUDENTS	
Letting Go	Freedom	
Effective Questioning	Redefining failure	
Staying Focused on Purpose	Staying Focused on Criteria	

Science Investigations vs. Engineering Process

Using chart paper compare and contrast a Science Investigation with the Engineering Process you used in the activity.

Science Investigation	Engineering Design Process	
Similarities:		
Sillinariues.		

Science Investigations vs. Engineering Process

Science Investigation

□ Use these materials (aluminum foil, craft sticks, straws, felt) to determine factors that create resistance to liquids.

Engineering Challenge

☐ Use these materials (aluminum foil, craft sticks, straws, felt) to design a waterproof roofing system.

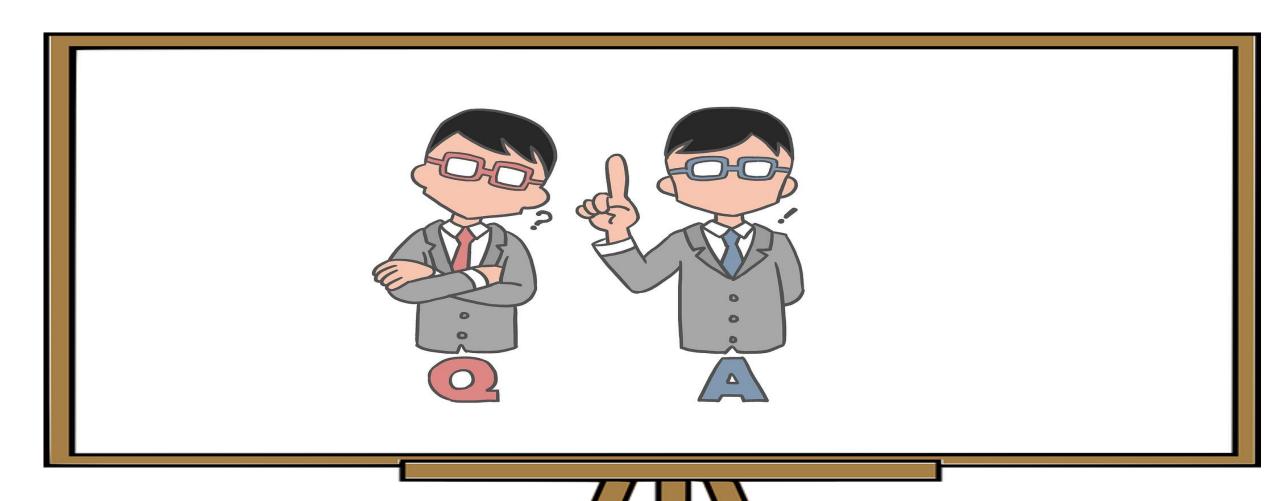
Note: See Handout #1 Distinguishing Science Practices From Those in Engineering

Science Investigations vs. Engineering Process

- ➤ If students are trying to answer a question, they are doing science.
- ➤ If they are trying to solve a problem, they are doing engineering.

What does this look like in a Lesson Plan? (5E Model)

SCIENCE	ENGINEERING	
ENGAGEMENT	ASK	
EXPLORATION	IMAGINE and CREATE – draw a diagram	
EXPLANATION	CREATE – test your design	
ELABORATION	IMPROVE	
EVALUATION	EVALUATION	


Note: See Handout #2 - 5E Lesson Plan detailed lesson plan

Create a Lesson Plan

- □ Work in a group (at various grade levels) to identify standards that incorporate the engineering practices.
- □ Identify an engineering challenge that builds on the disciplinary core idea(s).
- ☐ Create a lesson plan using the 5E model template.

Note: See Handout #3 - Resources

Reflections/Questions

Rate your knowledge of Engineering Practices in the New Louisiana Science Standards

	I understand and could explain the topic to others.	4
	I understand and can work on my own.	3
	I understand but I still need a little help.	2
(1)	I am finding this tricky.	1

Contact Info

Armetta Wright, NBCT awright@ebrschools.org Magnolia Woods STEM Teacher/Leader

Maricel Salvacion msalvacion@ebrschools.org EBRPSS K-5 STEM Specialist

