

LOUISIANA ASSOCIATION of TEACHERS of MATHEMATICS

LATM Presents - Essential Math Models that Support LSSM Instruction:

Utilizing Area Models in High School Mathematics to Deepen Students' Understanding

Leading the way to excellence in mathematics teaching and learning in Louisiana

Students today are being asked to demonstrate certain key skills in mathematics:

- Demonstrate understanding of the math concept, not just the procedure
- Apply their understanding to real world examples
- Use accurate procedures and skills to answer questions
- Demonstrate mathematical reasoning by explaining, justifying, or critiquing with precision

Leading the way to excellence In mathematics teaching and learning In Louisiana
\qquad

Area Model

Students today are being asked to demonstrate certain key skills in mathematics:

- Demonstrate understanding of the math concept, not just the procedure
- Apply their understanding to real world examples
- Use accurate procedures and skills to answer questions
- Demonstrate mathematical reasoning by explaining, justifying, or critiquing with precision

Leading the way to excellence in mathematics teaching and learning in Louisiana

By the end of the session, participants should:

- Understand the value of new models for helping students develop number sense
- Analyze the progressions of the area model

\qquad

$$
5
$$

$$
+2+2+2
$$

Grades 1-2

-Continue work with ten frames. - Here are 12 colored tiles. Make a rectangle with your tiles. Label the row and columns. How many are in each row? If it's a $2 x 6$, can we add 6 and 6 to find our total? If it's a $3 x 4$, can we add 4 and 4 and 4 to get our total? (1.G.A.1, 2.0A.C.4)

Area Model

Leading the way to excellence in mathematics teaching and learning in Louisiana

\qquad
Grade 4
4.NBT.5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Each part of the region above corresponds to one of the terms in the computation below.

$$
8 \times 549=8 \times(500+40+9)
$$

$$
=8 \times 500+8 \times 40+8 \times 9 .
$$

Leading the way to excellence In mathematics teaching and learning In Loulslana

Pablo solved a multiplication problem using two different methods. He made a mistake in either Method W or Method Z.

Method W	Method Z			
23×49	23×49			
$\begin{aligned} 20 \times 9= & 180 \\ 3 \times 9 & =27 \end{aligned}$	Area Model			Rectangle Sections
$20 \times 4=80$	20	40	$+9$	${ }_{8}^{1} 80$
299		800	180	120
				$\begin{array}{r} 180 \\ +\quad 27 \end{array}$
	$+3$	120	27	1,127

Identify the method where Pablo made a mistake and explain what he should do to correct it.

Grade 3

-Continue work with colored tiles and arrays.
-Introduce linear pieces. Build a 12×13 first with the linear pieces, then complete the model with the base ten blocks. (3.0A.B.5, 3.MD.C.7, 4.NBT.B.5)
-Have students draw models to represent the linear and area pieces and relate the modules to the standard algorithm.

Area Model

```
Leading the way to excellence in mathematics teaching and learning in Lowisiana
```


Area Model
Leading the way to excellence In mathemat/cs teaching and learning In Loulslana

Grade 5

Area Model
Leading the way to excellence in mathematics teaching and learning in Lowisiana

Fractions

Step 1: Draw a unit rectangle and divide it into 8 pieces vertically. Lightly shade 3 of those pieces. Label it $3 / 8$.

$1 / 2 \times 3 / 8$

Step 2: Use a horizontal line and divide the unit rectangle in half. Darkly shade $1 / 2$ of $3 / 8$ and label it.

Area Model

Building on partial products

Given the dimensions of Peter's house and patios, find the area of the house, each patio, and garden.
house, each patio, and garden.

Area Model

Peter's friend Lisa wants to have patios and a garden, too. Peter knows Lisa's house is square, but doesn't know how big, so he just labels the length and width of Lisa's house x.

	x	8 ft
	House	Patio
	x^{2}	$8 x$
	Patio	Garden
5 ft	$5 x$	40

How can you write the area of the house? $x \cdot x=x^{2} \mathrm{sq} \mathrm{ft}$

How can you write the area of each patio? $8 \cdot x=8 x$ sq ft and $5 \cdot x=5 x$ sq ft

What is the area of the garden?
$5 \cdot 8=40 \mathrm{sq} \mathrm{ft}$
How can you write the total area of the house, patios, and garden? Is there more than one way?
As a sum: $x^{2}+13 x+40$ sq ft
As a product: $(x+8)(x+5)$ sq ft

Models of to Models for

Sometimes we want to transition away from less-formal contexts and models. Other times we have to.

Consider the multiplication of $(x+2)(x-3)$:

Let's use the area model to find this product:
$3(x+2)$.

We can use the same strategy to multiply binomials.

Let's create an area model for

$$
(x+3)(x+2)
$$

What dimensions do
we need for our area model? Why?

	x	
	x^{2}	$2 x$
3		
	$3 x$	6

$x \cdot x=x^{2}$
$x \cdot 2=2 x$
$3 \cdot x=3 x$
$3 \cdot 2=6$
$x^{2}+2 x+3 x+6=x^{2}+5 x+6$
x 2

Now let's try $2 x^{2}(4 x+7)$.
This looks more difficult, but it works exactly the same way.

$$
\begin{aligned}
& \\
& 2 x^{2}(4 x+7)=2 x^{2} \cdot 4 x+2 x^{2} \cdot 7 \\
& =8 x^{3}+14 x^{2}
\end{aligned}
$$

Area Model

Now find the product
$\left(x^{2}-4\right)(x+3)$.
What do you notice that is the same as before?
What do you notice that is

x^{2}		-4
	x^{3}	$-4 x$
3	$3 x^{2}$	-12

$$
\left(x^{2}-4\right)(x+3)=x^{3}+3 x^{2}-4 x-12
$$

Handout \#2

Area Model

What are the dimensions?

Robin wants patios and a garden next to his house, arranged in a rectangle the same way Peter and Lisa have theirs arranged. Robin has $x^{2}+7 x+10$ sq ft of space. Use Algebra Tiles to model Robin's house, patios, and gardens.

Area Model

What are the dimensions?

Robin wants patios and a garden next to his house, arranged in a rectangle the same way Peter and Lisa have theirs arranged. Robin has $x^{2}+7 x+10 \mathrm{sq} \mathrm{ft}$ of space. Use Algebra Tiles to model Robin's house, patios, and gardens.

Which arrangement makes a rectangle? What are its dimensions?

Models for grouping x :

What is the pattern here?
How do you guide this re-invention?
Area Model

Factoring problem string

(1) $x^{2}+4 x+3$
(2) $x^{2}+6 x+8$
(3) $2 x^{2}+7 x+3$
(9) $8 x^{2}+22 x+15$
(6) $4 x^{2}+16 x+16$
(6) $x^{2}+6 x+4$

Problem \#4 with box/table:

If students are still dependent on Algebra Tiles, where do you expect them to struggle? Why?
What happened with problem \#6?
Area ModeI

Factoring problem string

(1) $x^{2}+4 x+3$
(2) $x^{2}+6 x+8$
(3) $2 x^{2}+7 x+3$
(-) $8 x^{2}+22 x+15$
(6) $4 x^{2}+16 x+16$
($x^{2}+6 x+4$

Problem \#4 with box/table:

If students are still dependent on Algebra Tiles, where do you expect them to struggle? Why? What happened with problem \#6?

Factoring problem string

(1) $x^{2}+4 x+3$
(2) $x^{2}+6 x+8$
(3) $2 x^{2}+7 x+3$
(2) $8 x^{2}+22 x+15$
(6) $4 x^{2}+16 x+16$
($x^{2}+6 x+4$

Problem \#4 with box/table:

If students are still dependent on Algebra Tiles, where do you expect them to struggle? Why?
What happened with problem \#6?
Area Model

Factoring problem string

- $x^{2}+4 x+3$
(2) $x^{2}+6 x+8$
(3) $2 x^{2}+7 x+3$
(3) $8 x^{2}+22 x+15$
(5) $4 x^{2}+16 x+16$
(-) $x^{2}+6 x+4$

If students are still dependent on Algebra Tiles, where do you expect them to struggle? Why? What happened with problem \#6?

Completing the square of $x^{2}+6 x+4$

What if we can't make a rectangle?
If you're trying to solve $x^{2}+6 x+4=0$, which of these equivalencies offers a way forward?

Area Model

Completing the square of $x^{2}+6 x+4$

x	
	x
x^{2}	$3 x$
+3	

Completing the square of $x^{2}+6 x+4$

$$
(x+3)^{2}-5=0
$$

Completing the square of $x^{2}+6 x+4$

$$
\begin{aligned}
(x+3)^{2}-5 & =0 \\
\frac{(x+3)^{2}}{} & =5 \\
\frac{\sqrt{(x+3)^{2}}}{} & = \pm \sqrt{5} \\
x+3 & = \pm \sqrt{5} \\
x & =-3 \pm \sqrt{5}
\end{aligned}
$$

What role should the quadratic formula play in this progression?

Completing the square problem string

(0) $x^{2}+4 x+1$
(2) $x^{2}-2 x+5$
(3) $x^{2}+3 x+4$
(9) $2 x^{2}+8 x+2$
(6) $2 x^{2}+5 x-4$

Problem \#3 with box/table:

If students are still dependent on Algebra Tiles, where do you expect them to struggle? Why?

Completing the square problem string

(1) $x^{2}+4 x+1$
(2) $x^{2}-2 x+5$
(3) $x^{2}+3 x+4$
(-) $2 x^{2}+8 x+2$
(6) $2 x^{2}+5 x-4$

Problem \#3 with box/table:

x^{2}	$3 / 2 x$
$3 / 2 x$	

If students are still dependent on Algebra Tiles, where do you expect them to struggle? Why?

Area Model

Completing the square problem string

(1) $x^{2}+4 x+1$
(2) $x^{2}-2 x+5$
(3) $x^{2}+3 x+4$
(9) $2 x^{2}+8 x+2$
(5) $2 x^{2}+5 x-4$

Problem \#3 with box/table:

If students are still dependent on Algebra Tiles, do you expect them to struggle? Why?

Area Model

Completing the square problem string

(1) $x^{2}+4 x+1$
(2) $x^{2}-2 x+5$
(3) $x^{2}+3 x+4$
(-2 $2 x^{2}+8 x+2$
(6) $2 x^{2}+5 x-4$

Problem \#3 with box/table:

x^{2}	$3 / 2 x$
$3 / 2 x$	$9 / 4$

$$
\left(x+\frac{3}{2}\right)^{2}+\frac{7}{4}
$$

If students are still dependent on Algebra Tiles, do you expect them to struggle? Why?

Dividing polynomials

The last problem in multiplying polynomials was $\left(x^{2}+4 x+1\right)(3 x+4):$

Knowing the patterns of like terms, can you fill in what's missing if the product is $6 x^{3}+17 x^{2}+16 x+6$?

What are the factors (dimensions) of the second box?
Area Model

Dividing polynomials

The last problem in multiplying polynomials was $\left(x^{2}+4 x+1\right)(3 x+4):$

Knowing the patterns of like terms, can you fill in what's missing if the product is $6 x^{3}+17 x^{2}+16 x+6$?

What are the factors (dimensions) of the second box?
Area Model

Dividing polynomials

The last problem in multiplying polynomials was $\left(x^{2}+4 x+1\right)(3 x+4):$

Knowing the patterns of like terms, can you fill in what's missing if the product is $6 x^{3}+17 x^{2}+16 x+6$?

What are the factors (dimensions) of the second box?

Area Model

Dividing polynomials

The last problem in multiplying polynomials was $\left(x^{2}+4 x+1\right)(3 x+4):$

Knowing the patterns of like terms, can you fill in what's missing if the product is $6 x^{3}+17 x^{2}+16 x+6$?

What are the factors (dimensions) of the second box?
Area Model

Dividing polynomials

The last problem in multiplying polynomials was $\left(x^{2}+4 x+1\right)(3 x+4):$

Knowing the patterns of like terms, can you fill in what's missing if the product is $6 x^{3}+17 x^{2}+16 x+6$?

What are the factors (dimensions) of the second box?
Area Model

Dividing polynomials

The last problem in multiplying polynomials was $\left(x^{2}+4 x+1\right)(3 x+4):$

Knowing the patterns of like terms, can you fill in what's missing if the product is $6 x^{3}+17 x^{2}+16 x+6$?

	$3 x^{2}$	$+4 x$	+2
$2 x$	$6 x^{3}$	$8 x^{2}$	$4 x$
+3	$9 x^{2}$	$12 x$	6

What are the factors (dimensions) of the second box?
Area Model

Dividing polynomials

The last problem in multiplying polynomials was $\left(x^{2}+4 x+1\right)(3 x+4):$

Knowing the patterns of like terms, can you fill in what's missing if the product is $6 x^{3}+17 x^{2}+16 x+6$?

| $3 x^{2}$ | | $+4 x$ |
| :--- | :--- | :--- | | $6 x^{3}$ | $8 x^{2}$ | $4 x$ |
| :--- | :--- | :--- |
| $2 x$ | | |
| | $9 x^{2}$ | $12 x$ |
| | | 6 |

What are the factors (dimensions) of the second box?

$$
\left(3 x^{2}+4 x+2\right)(2 x+3)
$$

Area Model

Knowing patterns of like terms, can you fill in what's missing if the product is $x^{3}+8 x^{2}+19 x+20$?

How is this different than asking students to divide $\frac{x^{3}+8 x^{2}+19 x+20}{x+5}$?

Area Model

Knowing patterns of like terms, can you fill in what's missing if the product is $x^{3}+8 x^{2}+19 x+20$?

How is this different than asking students to divide $\frac{x^{3}+8 x^{2}+19 x+20}{x+5}$?

Knowing patterns of like terms, can you fill in what's missing if the product is $x^{3}+8 x^{2}+19 x+20$?

How is this different than asking students to divide $\frac{x^{3}+8 x^{2}+19 x+20}{x+5}$

Knowing patterns of like terms, can you fill in what's missing if the product is $x^{3}+8 x^{2}+19 x+20$?

How is this different than asking students to divide $\frac{x^{3}+8 x^{2}+19 x+20}{x+5}$?

Knowing patterns of like terms, can you fill in what's missing if the product is $x^{3}+8 x^{2}+19 x+20$?

$x^{2}+3 x$			
x	x^{3}	$3 x^{2}$	
+5	$5 x^{2}$	$15 x$	

How is this different than asking students to divide $\frac{x^{3}+8 x^{2}+19 x+20}{x+5}$?

Area Model

Knowing patterns of like terms, can you fill in what's missing if the product is $x^{3}+8 x^{2}+19 x+20$?

How is this different than asking students to divide $\frac{x^{3}+8 x^{2}+19 x+20}{x+5}$?

Area Model

Knowing patterns of like terms, can you fill in what's missing if the product is $x^{3}+8 x^{2}+19 x+20$?

How is this different than asking students to divide $\frac{x^{3}+8 x^{2}+19 x+20}{x+5}$?

Dividing polynomials problem string

```
```

(1) $\frac{x^{3}+8 x^{2}+23 x+24}{x+3}$

```
```

(1) $\frac{x^{3}+8 x^{2}+23 x+24}{x+3}$
2 $\frac{4 x^{3}+11 x^{2}+11 x+10}{x+2}$
2 $\frac{4 x^{3}+11 x^{2}+11 x+10}{x+2}$
3 $\frac{3 x^{4}+17 x^{3}+10 x^{2}+x+5}{x+5}$
3 $\frac{3 x^{4}+17 x^{3}+10 x^{2}+x+5}{x+5}$
(a) $\frac{x^{2}+4 x+6}{x+5}$

```
```

(a) $\frac{x^{2}+4 x+6}{x+5}$

```
```

What role should long and synthetic division play in this progression?

Area Model

Knowing patterns of like terms, can you fill in what's missing if the product is $x^{3}+8 x^{2}+19 x+20$?

How is this different than asking students to divide $\frac{x^{3}+8 x^{2}+19 x+20}{x+5}$?

Louisiana Association of Teachers of Mathematics (LATM)

- Find us on the web at: www.lamath.org
- LIKE us on Facebook @ Louisiana Association of Teachers of MathematicsLATM
- Teacher Awards
- Teacher Travel Grants
- Professional Development Opportunities
- Annual Conference- in Baton Rouge Nov. 6-8, 2017

ASIATION of

- National Council of Teachers of Teachers of Mathematics (NCTM). 2014. Principles to Action: Ensuring Mathematical Success for All. Reston, VA: NCTM.
- The Common Core Standards Writing Team. 2012. Progressions for the CSSM, K, Counting and Cardinality; K-5, Operations and Algebraic Thinking; and Numbers and Operations in Base Ten.
- John Hoven and Barry Garelick. Educational Leadership Volume 65 Number 3 Making Math Count Pages 28-31
http://ramosgroup.squarespace.com/storage/Singapore\ Math \%20Simple\%20or\%20Complex.pdf
- Johnson, Raymond (2016): Efficient Polynomial Multiplication, Division, Factoring, and Completing the Square. figshare. https://dx.doi.org/10.6084/m9.figshare.3124834.v1
- Mikles, Chris : Using Area Models to Teach Multiplying, Factoring and Division of Polynomials http://pdfs.cpm.org/information/conference/AC\ A2C\ Mult\ and\ Div\ Polys.pdf

Leading the way to excellence in mathematics teaching and learning in Louisiana

