

Performance Expectation and Louisiana Connectors

HS-EVS1-1 Analyze and interpret data to identify the factors that affect sustainable development and natural resource management in Louisiana. LC-HS-EVS1-1a Identify factors (e.g., human activity, population size, types of crops grown) that affect sustainable development in Louisiana. LC-HS-EVS1-1b Identify factors (e.g., human activity, population size, types of crops grown) that affect natural resource management in Louisiana.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	LOUISIANA'S NATURAL RESOURCES	STABILITY AND CHANGE
Analyzing data in 9-12 builds on K-8	Ecosystem capital can be characterized as goods (removable products) and services such as	Change and rates of
experiences and progresses to	the functions and values of wetlands. (HS.EVS1A.a)	change can be
introducing more detailed statistical		quantified and modeled
analysis, the comparison of data	Ecosystem attributes or services are important to value.	over very short or very
sets for consistency, and the use of	Ecosystem capital are the resources or benefits provided by ecosystems that are needed for	long periods of time.
models to generate and analyze	economic development.	Some system changes
data.	Ecosystems provide different goods or removable products such as timber, food, medicines,	are irreversible.
 Analyze data using tools, 	and fuel.	
technologies, and/or models (e.g.,	Ecosystems serve important functions for human and wildlife (e.g., natural water filtration,	Change and rates of
computational, mathematical) in	control of floods by absorbing extra runoff from heavy rains, providing animal habitats).	change can be
order to make valid and reliable	Ecosystems provide social and cultural services such as recreation.	quantified over very
scientific claims or determine an	Changes to ecosystems (e.g., wetlands, forests) for commercial development, tourism, or	short or very long
optimal design solution.	agriculture to produce ecosystem capital can threaten and degrade those ecosystems.	periods of time.
		Change and rates of
Analyze data using tools in order to		change can be modeled
make valid and reliable scientific		over very short or very
claims.		long periods of time.
Analyze data using tools in order to		Some system changes
determine an optimal design		are irreversible.
solution.		
Analyze data using technology in		
order to make valid and reliable		
scientific claims.		
Analyze data using technology in		
order to determine an optimal		
design solution.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyze data using models in order		
to make valid and reliable scientific		
claims.		
Analyze data using models in order		
to determine an optimal design		
solution.		

Clarification Statement

Evidence of Louisiana's natural resource wealth is found in understanding functions and values of varied ecosystems and environments, supply of nonrenewable mining products and profitable agricultural commodities. Examples of key natural resources include state waterways (such as rivers, lakes, and bayous) and the aquatic life found in them, regions of agriculture (pine forests, sugar cane, and rice fields) and high concentrations of minerals and fossil fuels on and off shore. Factors to consider in reviewing the management of natural resources include a review of historical practices, costs of resource extraction and waste management, consumption of natural resources, ongoing research and the advancements in technology.

Performance Expectation and Louisiana Connectors

HS-EVS1-2 Obtain, evaluate and communicate information on the effectiveness of management or conservation practices for one of Louisiana's natural resources with respect to common considerations such as social, economic, technological, and influencing political factors over the past 50 years. LC-HS-EVS1-2a Identify the effectiveness of management practices for one of Louisiana's natural resources related to social factors over the past 50 years. LC-HS-EVS1-2b Identify the effectiveness of management practices for one of Louisiana's natural resources related to economic factors over the past 50 years. LC-HS-EVS1-2c Identify the effectiveness of management practices for one of Louisiana's natural resources related to technological factors over the past 50 years. LC-HS-EVS1-2c Identify the effectiveness of management practices for one of Louisiana's natural resources related to technological factors over the past 50 years.

LC-HS-EVS1-2d Identify the effectiveness of management practices for one of Louisiana's natural resources related to political factors over the past 50 years.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	RESOURCE MANAGEMENT FOR LOUISIANA	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Some changes to our natural environment such as the building of levees and hydrological	Cause and effect
experiences and progresses to	modification have provided for economic and social development but have resulted in	relationships can be
introducing more detailed statistical	unintended negative impacts. (HS.EVS1.B.b)	suggested and predicted
analysis, the comparison of data		for complex natural and
sets for consistency, and the use of	The natural environment can be changed by human activity.	human-designed
models to generate and analyze	Human activity can have both positive and negative effects on the natural environment.	systems by examining
data.	The economic and social development benefits from building levees and hydrological	what is known about
 Analyze data to identify design 	modification include supplying sources of power (i.e., clean, inexpensive, and renewable	smaller scale
features or characteristics of the	energy), water for irrigation and drinking, and reduction of flooding downstream.	mechanisms within the
components of a proposed process	Negative impacts of hydrological modification (e.g., building dams and levees) can include	system.
or system to optimize it relative to	altering the temperature and speed of water, reduction in organisms and in-stream	
criteria for success.	vegetation, movement of fish populations, increased flooding downstream, and preventing	Cause and effect
	seasonal overbank flooding that can provide needed nutrients to soils.	relationships can be
Analyze data using tools in order to	Humans can take steps to restore some damaged ecosystems (e.g., fish ladders,	suggested for complex
make valid and reliable scientific	consideration of environmental impacts of new or renewed licenses for hydroelectric dams).	systems (natural and
claims.		human-designed) by
Analyze data using tools in order to		examining what is
determine an optimal design		known about smaller
solution.		scale mechanisms
Analyze data using technology in		within the system.
order to make valid and reliable		Cause and effect
scientific claims.		relationships can be

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyze data using technology in		predicted for complex
order to determine an optimal		systems (natural and
design solution.		human-designed) by
Analyze data using models in order		examining what is
to make valid and reliable scientific		known about smaller
claims.		scale mechanisms
Analyze data using models in order		within the system.
to determine an optimal design		
solution.		

Clarification Statement

The rate of land loss and habitat conversion from a variety of forces results in stresses and constraints that influence decisions and carry consequences that affect quality of life and have a bearing on sustainability. Increases in commercial and recreational uses may result in the need for environmental policies and call for changes in long established practices. Community efforts to address changes to secure growth while preserving the resources depend on education and collaboration between groups. Examples may include ground water conservation, erosion/flood control, forestry stewardship, game and wildlife, commercial fishing, oil and gas industry, dredging, or regulatory factors.

Performance Expectation and Louisiana Connectors

HS-EVS1-3 Analyze and interpret data about the consequences of environmental decisions to determine the risk-benefit values of actions and practices implemented for selected issues.

LC-HS-EVS1-3a Identify the risk-benefit values of implemented actions using data for selected environmental issues. LC-HS-ESV1-3b Identify the risk-benefit values of implemented practices using data for selected environmental issues.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	RESOURCE MANAGEMENT FOR LOUISIANA	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Some changes to our natural environment such as the building of levees and hydrological	Cause and effect
experiences and progresses to	modification have provided for economic and social development but have resulted in	relationships can be
introducing more detailed statistical	unintended negative impacts. (HS.EVS1B.b)	suggested and predicted
analysis, the comparison of data		for complex natural and
sets for consistency, and the use of	The natural environment can be changed by human activity.	human-designed
models to generate and analyze	Human activity can have both positive and negative effects on the natural environment.	systems by examining
data.	The economic and social development benefits from building levees and hydrological	what is known about
 Analyze data to identify design 	modification include supplying sources of power (i.e., clean, inexpensive, and renewable	smaller scale
features or characteristics of the	energy), water for irrigation and drinking, and reduction of flooding downstream.	mechanisms within the
components of a proposed process	Negative impacts of hydrological modification (e.g., building dams and levees) can include	system.
or system to optimize it relative to	altering the temperature and speed of water, reduction in organisms and in-stream	
criteria for success.	vegetation, movement of fish populations, increased flooding downstream, and preventing	Cause and effect
	seasonal overbank flooding that can provide needed nutrients to soils.	relationships can be
Analyze data using tools in order to	Humans can take steps to restore some damaged ecosystems (e.g., fish ladders,	suggested for complex
make valid and reliable scientific	consideration of environmental impacts of new or renewed licenses for hydroelectric dams).	systems (natural and
claims.		human-designed) by
Analyze data using tools in order to		examining what is
determine an optimal design		known about smaller
solution.		scale mechanisms
Analyze data using technology in		within the system.
order to make valid and reliable		Cause and effect
scientific claims.		relationships can be
Analyze data using technology in		predicted for complex

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
order to determine an optimal		systems (natural and
design solution.		human-designed) by
Analyze data using models in order		examining what is
to make valid and reliable scientific		known about smaller
claims.		scale mechanisms
Analyze data using models in order		within the system.
to determine an optimal design		
solution.		

Clarification Statement

Examples could be taken from system interactions: (1) loss of ground vegetation causing an increase in water runoff and soil erosion; (2) dammed rivers increasing ground-water recharge, decreasing sediment transport, and increasing coastal erosion; (3) loss of wetlands reducing storm protection buffer zones allowing further wetland reduction; and (4) hydrological modification such as levees providing protection to infrastructure at a cost to ecosystems.

Performance Expectation and Louisiana Connectors

HS-EVS2-1 Design and evaluate a solution to limit the introduction of non-point source pollution into state waterways. LC-HS-EVS2-1a Use data or qualitative scientific and technical information to evaluate a solution to limit a non-point source pollution (e.g., land or urban runoff, abandoned mines) into state waterways.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	POLLUTION AND THE ENVIRONMENT	STRUCTURE AND
designing solutions: Constructing	Pollution includes both natural and man-made substances which occur at rates and levels	FUNCTION
explanations (science) and designing	which incur harm (i.e., combustion of fossil fuels, agricultural waste, and industrial	Investigating or
solutions (engineering) in 9-12	byproducts). Pollution can be categorized as point-source pollution and non-point source	designing new systems
builds on K-8 experiences and	pollution. (HS.EVS2A.a)	or structures requires a
progresses to explanations and		detailed examination of
designs that are supported by	Pollution is any change to the environment that has a negative effect on living things.	the properties of
multiple and independent student-	Natural pollution includes events that pollute the air including forest fires, volcanic	different materials, the
generated sources of evidence	eruptions, dust storms, and wind erosion.	structures of different
consistent with scientific ideas,	Pollution (e.g., air pollution) is often the result of an activity that benefits humans (e.g.,	components, and
principles, and theories.	generating electricity by burning coal, building and maintaining factories, burning fossil	connections of
 Design, evaluate and/or refine a 	fuels, carbon dioxide from vehicles, and other fine particles suspended in the air).	components to reveal
solution to a complex real-world	Some data suggest that the levels of pollution are increasing rapidly (i.e., increase in	its function and/or solve
problem, based on scientific	greenhouse gases).	a problem.
knowledge, student-generated	Pollution can be categorized as point-source pollution which are identifiable sources of	
sources of evidence, prioritized	pollution from which pollutants are discharged such as a pipe, ditch, ship, refineries,	Designing and/or
criteria and trade-off considerations.	automobile manufacturers, factories or sewage treatment plants.	investigating new
	Pollution can also be categorized as non-point source pollution which results from runoff or	structures/systems
Design a solution to a complex real-	rain or melted snow as it moves over the ground (e.g., following a heavy rain, water flows	requires knowledge of
world problem, based on scientific	across the surface of a road and picks up oil and gas left by car or chemicals used in	the properties (e.g.,
knowledge, student-generated	agriculture or lawn care flow into storm drains and then into nearby by bodies of water).	rigidity and hardness)
sources of evidence, prioritized		of the materials needed
criteria, and trade-off	ENVIRONMENTAL CHOICES	for specific parts of the
considerations.	Different approaches can be used to manage impacts to our environment. Generally speaking,	structure.
Evaluate a solution to a complex	we can change human activities to limit negative impacts. Alternately, we can use	Designing and/or
real-world problem, based on	technologies that reduce impact or we can perform restoration work to recover natural	investigating new
scientific knowledge, student-	functions and values. (HS.EVS2C.a)	structures/systems

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
generated sources of evidence,		requires knowledge of
prioritized criteria, and trade-off	Exponential growth of the global human population and the resulting increase in	the structures of
considerations.	consumption places severe stress on finite resources.	different components.
Refine a solution to a complex real-	Advances in technology can help mitigate human impact on the environment.	Designing and/or
world problem, based on scientific	Changes in human behaviors and activities (e.g., reduce the use of coal and other fossil	investigating a new
knowledge, student-generated	fuels) and laws that control air and water quality and promote development of new	structure requires a
sources of evidence, prioritized	technology can limit negative impacts on the environment.	detailed examination of
criteria, and trade-off	Technological solutions (e.g., wet scrubber; baghouse, solar panels, emission controls) can	the connections of
considerations.	result in lower levels of pollution (e.g., cleaner air) and reduce the environmental impact.	components to reveal
	Technological solutions (e.g., desalination of water to provide clean drinking water, vehicle	its function.
	fuel efficiency) can also restore or recover natural functions and values in the environment.	Designing and/or investigating a new
	Trade-offs occur when we make environmental choices. (HS.EVS2C.b)	structure requires a
		detailed examination of
	Environmental choices often requires makina trade-offs amona competina criteria (cost.	the connections of
	reliability, and aesthetic, social, cultural, and political impacts).	components to reveal
	Many factors, including environmental or health impacts, change over time and vary from place to place.	any problems.
	DEFINING AND DELIMITING ENGINEERING PROBLEMS	
	Humanity faces major global challenges today, such as the need for supplies of clean water	
	and food or for energy sources that minimize pollution, which can be addressed through	
	engineering. These global challenges also may have manifestations in local communities. (HS.ETS1A.b)	
	There are common challenges faced by humans living across the world.	
	Human survival depends on developing practices that will achieve sustainable systems.	
	Common problems include the need for clean water and air, food (decreased crop yield),	
	and sources of energy that minimize pollution (e.g., solar energy).	
	These common problems faced by humans living across the world may also create issues in	
	local communities including illness (asthma), lack of clean drinking water, reduction in ecosystems and plants and animals.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept

Clarification Statement
Examples of non-point source water pollution could include nitrogen and phosphorus compounds from agricultural activities and sediments from poor land-use
practices. Nitrogen and phosphorus contribute to eutrophication and are anthropogenic drivers of the Gulf of Mexico hypoxic area known as the dead zone.

P

Performance Expectation and Louisiana Connectors

HS-EVS2-2 Use a model to predict the effects that pollution as a limiting factor has on an organism's population density. LC-HS-EVS2-2a Recognize the relationship between pollution and its effect on an organism's population size. LC-HS-EVS2-2b Predict the effects that pollution as a limiting factor has on an organism's population density using a model (e.g., mathematical, diagrams, simulations).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	POLLUTION AND THE ENVIRONMENT	CAUSE AND EFFECT
Modeling in 9-12 builds on K-8	Different organisms have unique tolerances to pollution hazards. Many of the organisms most	Cause and effect
experiences and progresses to using,	tolerant of pollution are the least desirable to humans (e.g., for food, for recreation, for	relationships can be
synthesizing, and developing models	ecosystem services). (HS.EVS2A.b)	suggested and predicted
to predict and show relationships		for complex natural and
among variables between systems	Different organisms (plants and animals) have different abilities to respond to pollution	human-designed
and their components in the natural	hazards (e.g., some organisms can survive in poor water quality with lower oxygen levels).	systems by examining
and designed world(s).	In nature, populations of organisms rarely grow uncontrolled.	what is known about
 Develop and/or use a model 	Each ecosystem has a carrying capacity or number of organisms it can sustain.	smaller scale
(including mathematical and	Carrying capacities in ecosystems are impacted by pollution and can limit the numbers of	mechanisms within the
computational) to generate data to	organisms or populations they can support.	system.
support explanations, predict	Tolerance levels refer to the amount of pollution organisms can handle before dying or	
phenomena, analyze systems and/or	moving to another habitat.	Cause and effect
solve problems.	A system with proportionally dense populations of tolerant organisms indicates poor	relationships can be
	environmental quality.	suggested for complex
Develop or use a model to identify	Many organisms that are most tolerant of pollution are not desired by humans for food	systems (natural and
and describe the components of a	(e.g., aquatic worms) and recreation or are not economically viable.	human-designed) by
system.		examining what is
Develop or use a model to identify		known about smaller
and describe the relationships		scale mechanisms
between the components of a		within the system.
system.		Cause and effect
Develop or use a model to predict		relationships can be
relationships between systems or		predicted for complex
within a system.		systems (natural and
Identify that models can help		human-designed) by

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
illustrate relationships between		examining what is
systems or within a system.		known about smaller
		scale mechanisms
		within the system.

Clarification Statement

The law of limiting factors is often illustrated as a graphic tolerance curve and can be used to infer the range of tolerance a species has for specific pollution hazards. When combined with real-world data such as field measurements of abiotic factors, these models can be used to help predict the suitability of an ecosystem for a particular species.

Performance Expectation and Louisiana Connectors

HS-EVS2-3 Use multiple lines of evidence to construct an argument addressing the negative impacts that introduced organisms have on Louisiana's native species.

LC-HS-EVS2-3a Evaluate evidence supporting an argument regarding negative impacts of introduced organisms (e.g., zebra mussel, fire ant, nutria) have on Louisiana's native species.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ECOSYSTEM CHANGE	CAUSE AND EFFECT
evidence: Engaging in argument	The introduction of exotic/invasive species causes a disruption in natural ecosystems and can	Cause and effect
from evidence in 9-12 builds on K-8	lead to the loss of native species (i.e., threatened/endangered). (HS.EVS2B.a)	relationships can be
experiences and progresses to using		suggested and predicted
appropriate and sufficient evidence	Invasive species are plants, animals, or other organisms that are introduced to a given area	for complex natural and
and scientific reasoning to defend	outside their original range and cause harm in their new home.	human-designed
and critique claims and explanations	Invasive species can be any kind of a living organism including plant, fungus, or an animal	systems by examining
about natural and designed	species that is not native to an ecosystem.	what is known about
world(s). Arguments may also come	Because there are no natural "enemies," invasive species can spread aggressively and can	smaller scale
from current scientific or historical	become difficult to control as the factors that influence their survival (e.g., diseases and	mechanisms within the
episodes in science.	other organisms) are not present.	system.
 Construct, use, and/or present an 	Some invasive species (e.g., ornamental plants, kudzu) are intentionally or accidentally	
oral and written argument or	released and can cause damage to the ecosystem.	Cause and effect
counterarguments based on data	Invasive species impose great costs to agriculture, forestry, fisheries, and other human	relationships can be
and evidence.	enterprises, as well as to human health.	suggested for complex
		systems (natural and
Construct an oral argument based	Changes in ecosystems impact the availability of natural resources (e.g. sediment starvation,	human-designed) by
on data and evidence.	climate change). (HS.EVS2B.b)	examining what is
Construct a written argument		known about smaller
based on data and evidence.	People compete with each other and other living things for Earth's limited resources.	scale mechanisms
Construct an oral counterargument	Changes in human populations have affected the biodiversity of local organisms and	within the system.
based on data and evidence.	availability of natural resources in given ecosystems (e.g., habitat loss, water quality).	Cause and effect
Construct a written	The availability of natural resources is impacted by the changes in ecosystems.	relationships can be
counterargument based on data	Extracting natural resources can affect ecosystems and the organisms within.	predicted for complex
and evidence.	Sediment starvation is a lack of sediment transport and is often caused by man-made	systems (natural and
	structures such as dams.	human-designed) by

Science and Engineering Practice

Enviro	onmental Science 🤇	
Disciplinary Core Idea	Crosscutting Conce	pt
at in incompation the same sidir of backites to fear fick, and athen a second	internet to the second state of the second state	

Movement of sediment is important in providing habitats for fish and other organisms in	examining what is
rivers.	known about smaller
Ecosystems undergo major changes as a result of such factors as climate change,	scale mechanisms
introduction of new species, and habitat destruction.	within the system.

Clarification Statement
The exotic organisms introduced in Louisiana include plants such as Chinese tallow, kudzu, and water hyacinth, and animals including nutria, Asian tiger
mosquitoes, and zebra mussels. These organisms can have impacts on scales ranging from the level of the individual (e.g., competition) to that of the landscape
(e.g., the destruction of coastal marshes by nutria).

Performance Expectation and Louisiana Connectors

HS-EVS3-1 Construct and evaluate arguments about the positive and negative consequences of using disposable resources versus reusable resources. *LC-HS-EVS3-1* Evaluate evidence supporting the positive consequences of using disposable resources versus reusable resources. *LC-HS-EVS3-2* Evaluate evidence supporting the negative consequences of using disposable resources versus reusable resources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	STEWARDSHIP	ENERGY AND MATTER
evidence: Engaging in argument	Ecosystem sustainability can be used as a model for a sustainable society (e.g., recycling,	Changes of energy and
from evidence in 9-12 builds on K-8	energy efficiency, diversity). (HS.EVS3A.a)	matter in a system can
experiences and progresses to using		be described in terms of
appropriate and sufficient evidence	A sustainable society is one that can continue indefinitely where the level of consumption	energy and matter flows
and scientific reasoning to defend	reflects environmental and resource balance (e.g., not depleting resources).	into, out of, and within
and critique claims and explanations	A healthy ecosystem is one in which plant and animal populations interact in balance with	that system.
about natural and designed	each other and abiotic factors (e.g., rocks, soil, and water).	
world(s). Arguments may also come	Complex systems are systems composed of many different components.	The processes of energy
from current scientific or historical	A sustainable human society relies upon natural resources (such as energy, fauna, wood, or	transformation and
episodes in science.	water), socioeconomic resources (such as labor or capital), and cultural resources (arts,	energy transfer can be
 Evaluate the claims, evidence, 	beliefs, institutions).	used to understand the
and/or reasoning behind currently	As in any ecosystem, a sustainable human society is based on preservation, protection, or	changes that take place
accepted explanations or solutions	restoration of the natural environment as well as the human ecosystem.	in physical systems.
to determine the merits of		
arguments.	Louisiana citizens are responsible for conserving our state's natural resources. Personal	
	actions can have a positive or negative impact. (HS.EVS3A.b)	
Evaluate the claims behind		
currently accepted explanations to	Resources are features of environments that are important and of value to humans in some	
determine the merits of arguments.	form.	
Evaluate the claims behind	Protecting the environment and biodiversity helps sustain human life.	
currently accepted solutions to	Each citizen of Louisiana is responsible for conserving the state's natural resources to ensure	
determine the merits of arguments.	that all citizens can have a healthy standard of living (e.g., clean air and water) and the	
Evaluate the evidence behind	state's ecosystems are sustained.	
currently accepted explanations to	Reducing, reusing, and recycling materials help to conserve natural resources.	
determine the merits of arguments.	The quality of the lives of future generations may depend on people's use of natural	
Evaluate the evidence behind	resources today.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
currently accepted solutions to determine the merits of arguments. Evaluate the reasoning behind currently accepted explanations to determine the merits of arguments. Evaluate the reasoning behind currently accepted solutions to determine the merits of arguments.	Each citizen can make lifestyle choices that reduce the use of the Earth's natural resources. Each citizen can reduce his or her demand on natural resources by recycling (replace and reuse products). Personal actions can have a positive impact on the state's natural resources (e.g., using public transportation and reducing demand for oil). Personal actions can have a negative impact on the state's natural resources (e.g., not recycling paper products or cans).	
 Construct, use, and/or present an oral and written argument or counterarguments based on data and evidence. 		
Construct an oral argument based on data and evidence. Construct a written argument based on data and evidence. Construct an oral counterargument based on data and evidence. Construct a written counterargument based on data and evidence.		

Clarification Statement

Resources can be both natural and man-made and may include renewable and non-renewable energy sources, soil, ecosystems, forestry, fisheries, plastic, paper, or aluminum products. Energy used to create and dispose of products may also be considered.

Performance Expectation and Louisiana Connectors

HS-ESS2-2 Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth's systems. LC-HS-ESS2-2a Identify relationships, using a model, of how the Earth's surface is a complex and dynamic set of interconnected systems (i.e., geosphere, hydrosphere, atmosphere, and biosphere).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EARTH MATERIALS AND SYSTEMS	STABILITY AND CHANGE
Analyzing data in 9-12 builds on K-8	Earth's systems, being dynamic and interacting, include feedback effects that can increase or	Feedback (negative or
experiences and progresses to	decrease the original changes. (HS.ESS2A.a)	positive) can stabilize or
introducing more detailed statistical		destabilize a system.
analysis, the comparison of data	Earth's systems are dynamic and interacting.	
sets for consistency, and the use of	Earth has interconnected spheres: lithosphere or geosphere, hydrosphere, biosphere,	Stability denotes a
models to generate and analyze	atmosphere and cryosphere.	condition in which a
data.	Changes in one system can cause changes to other systems.	system is in balance.
 Analyze data using tools, 	Rates of change of Earth's internal and surface processes occur over very short and very	A feedback loop is any
technologies, and/or models (e.g.,	long periods of time.	mechanism in which a
computational, mathematical) in	Many complex linkages and feedbacks among erosional and climatic processes in addition	condition triggers some
order to make valid and reliable	to tectonic ones change Earth's systems.	action that causes a
scientific claims or determine an	Such complexities include feedback, stabilizing or destabilizing links between component	change in that same
optimal design solution.	processes.	condition.
	A change in one sphere can cause changes to other spheres, resulting in positive or negative	The mechanisms of
Analyze data using tools in order to	feedback loops.	external controls and
make valid and reliable scientific		internal feedback loops
claims.	WEATHER AND CLIMATE	are important elements
Analyze data using tools in order to	The foundation for Earth's global climate systems is the electromagnetic radiation from the	for a stable system.
determine an optimal design	sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere,	A change in one part of
solution.	hydrosphere, and land systems, and this energy's re-radiation into space. (HS.ESS2D.a)	a system can cause
Analyze data using technology in		changes to other parts
order to make valid and reliable	Sunlight is a portion of the electromagnetic radiation given off by the sun.	of the system, resulting
scientific claims.	Energy from the sun travels to Earth and heats Earth's surface.	in positive or negative
Analyze data using technology in	Some of this energy is radiated back into Earth's atmosphere.	feedback loops.
order to determine an optimal	The sun's energy drives Earth's climate systems.	The changes (negative

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
design solution. Analyze data using models in order to make valid and reliable scientific claims. Analyze data using models in order to determine an optimal design solution.	Uneven heating of Earth's components (i.e., water, land, and air) produces local and global atmospheric and oceanic movement. Heat energy stored in the oceans and transferred by currents influence climate.	or positive) can stabilize or destabilize a system.

Clarification Statement

Examples could include climate feedbacks such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice which reduces the amount of sunlight reflected from Earth's surface increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.

Performance Expectation and Louisiana Connectors

HS-ESS2-4 Analyze and interpret data to explore how variations in the flow of energy into and out of Earth's systems result in changes in atmosphere and climate.

LC-HS-ESS2-4a Identify different causes of climate change and results of those changes with respect to the Earth's surface temperatures, precipitation patterns or sea levels over a wide range of temporal and spatial scales using a model.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Analyzing and interpreting data:	EARTH AND THE SOLAR SYSTEM	CAUSE AND EFFECT
Analyzing data in 9-12 builds on K-8	Cyclical changes in the shape of Earth's orbit around the sun, together with changes in the tilt	Empirical evidence is
experiences and progresses to	of the planet's axis of rotation, both occurring over hundreds of thousands of years, have	required to differentiate
introducing more detailed statistical	altered the intensity and distribution of sunlight falling on Earth. These phenomena cause a	between cause and
analysis, the comparison of data	cycle of ice ages and other gradual climate changes. (HS.ESS1B.b)	correlation and make
sets for consistency, and the use of		claims about specific
models to generate and analyze	Gradual changes in the shape of Earth's orbit around the sun contributes to phenomena	causes and effects.
data.	causing ice ages and other gradual climate changes.	
 Analyze data using tools, 	Earth's global temperatures can warm up or cool down if the amount of sunlight that enters	Evidence is required
technologies, and/or models (e.g.,	the atmosphere is significantly altered.	when attributing an
computational, mathematical) in	Cyclic variations of Earth's orbit around the sun impact the amount of sunlight that reaches	observed phenomenon
order to make valid and reliable	Earth's surface.	to a specific cause.
scientific claims or determine an	Gradual changes to the tilt of Earth's axis relative to its orbit around the sun have produced	Evidence is required to
optimal design solution.	different weather patterns.	explain the causal
		mechanisms in a system
Analyze data using tools in order to	EARTH MATERIALS AND SYSTEMS	under study.
make valid and reliable scientific	The geological record shows that changes to global and regional climate can be caused by	Evidence is required to
claims.	interactions among changes in the sun's energy output or Earth's orbit, tectonic events,	support a claim about
Analyze data using tools in order to	hydrosphere circulation, volcanic activity, glaciers, vegetation, and human activities. These	the causal mechanisms
determine an optimal design	changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to	in a system under
solution.	intermediate (ice ages) to very long-term tectonic cycles. (HS.ESS2A.d)	study.
Analyze data using technology in		
order to make valid and reliable	All Earth processes are the result of energy flowing and matter cycling within and among	
scientific claims.	Earth's systems.	
Analyze data using technology in	Changes to climate occur over a wide range of temporal and spatial scales.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
order to determine an optimal	The geological record (ice cores, sediment deposits, fossil evidence, and paleo vegetation	
design solution.	restorations) shows that changes to global and regional climate can be caused by several	
Analyze data using models in order	factors (Earth's orbit, tectonic events, volcanic glaciers, vegetation, etc.).	
to make valid and reliable scientific	Changes to the input, output, storages or redistribution of energy on Earth can occur over a	
claims.	short or extended time frame and can cause extreme weather conditions.	
Analyze data using models in order		
to determine an optimal design	WEATHER AND CLIMATE	
solution.	The foundation for Earth's global climate systems is the electromagnetic radiation from the	
	sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere,	
	hydrosphere and land systems, and this energy's re-radiation into space. (HS.ESS2D.a)	
	Sunlight is a portion of the electromagnetic radiation given off by the sun.	
	Energy from the sun travels to Earth and heats Earth's surface.	
	Some of this energy is radiated back into Earth's atmosphere.	
	The sun's energy drives Earth's climate systems.	
	Uneven heating of Earth's components (i.e., water, land, air) produce local and global	
	atmospheric and oceanic movement.	
	Heat energy stored in the oceans and transferred by currents influence climate.	
	Gradual atmospheric changes were due to plants and other organisms that captured carbon	
	dioxide and released oxygen. (HS.ESS2D.b)	
	Plants contribute to the make-up of Earth's atmosphere by absorbing carbon diovide and	
	releasing oxygen.	
	Carbon continuously cycles from one sphere to another.	
	In the past, the relative amount of carbon that cycled through the hydrosphere.	
	atmosphere, lithosphere or geosphere, and biosphere was partially due to the activity of	
	plants and other organisms.	
	Changes in the atmosphere due to human activity have increased carbon disvide	
	concentrations and thus affect climate (HS ESS2D c)	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
	Human activities that add carbon dioxide to the atmosphere may be warming Earth's atmosphere. A large amount of carbon dioxide has been released into Earth's atmosphere by human- related fossil fuel combustion. An increase in atmospheric carbon can increase the amount of heat energy stored in the system.	

Clarification Statement

Changes differ by timescale, from sudden (large volcanic eruption, hydrosphere circulation) to intermediate (hydrosphere circulation, solar output, human activity) and long-term (Earth's orbit and the orientation of its axis and changes in atmospheric composition). Examples of human activities could include fossil fuel combustion, cement production, or agricultural activity and natural processes such as changes in incoming solar radiation or volcanic activity. Examples of data can include tables, graphs, maps of global and regional temperatures, and atmospheric levels of gases.

Performance Expectation and Louisiana Connectors

HS-ESS2-5 Plan and conduct an investigation on the properties of water and its effects on Earth materials and surface processes. *LC-HS-ESS2-5a Identify a connection between the properties of water and its effects on Earth materials. LC-HS-ESS2-5b Investigate the effects of water on Earth materials and/or surface processes.*

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Planning and carrying out	THE ROLE OF WATER IN EARTH'S SURFACE PROCESSES	STRUCTURE AND
investigations: Planning and	The abundance of liquid water on Earth's surface and its unique combination of physical and	FUNCTION
carrying out investigations to	chemical properties are central to the planet's dynamics. These properties include water's	The functions and
answer questions (science) or test	exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight,	properties of natural
solutions (engineering) to problems	expand upon freezing, dissolve and transport materials, and lower the viscosities and melting	and designed objects
in 9-12 builds on K-8 experiences	points of rocks. (HS.ESS2C.a)	and systems can be
and progresses to include		inferred from their
investigations that provide evidence	Water has many unique properties (e.g., capacity to absorb, store, and release large	overall structure, the
for and test conceptual,	amounts of energy; to expand upon freezing; to dissolve and transport many materials) that	way their components
mathematical, physical, and	play a role in how it affects Earth systems (e.g., ocean thermal capacity contributes to	are shaped and used,
empirical models.	moderating temperature variations, ice expansion contributes to rock erosion).	and the molecular
 Plan an investigation (science) or 	Water exhibits a polar nature due to its molecular structure.	substructures of its
test a design (engineering)	Patterns of temperature, the movement of air, and the movement and availability of water	various materials.
individually and collaboratively to	at Earth's surface can be related to the effect of the properties of water on energy transfer.	
produce data to serve as the basis	Mechanical effects of water (e.g., stream transportation and deposition, erosion using	There are relationships
for evidence as part of building and	variations in soil moisture content, and expansion of water as it freezes) on Earth's	between structure and
revising models, supporting	materials can be used to infer the effect of water on Earth's surface properties.	function of natural and
explanations for phenomena, or	Chemical effects of water (e.g., properties of solubility, the reaction of water on iron) on	designed objects.
testing solutions to problems.	Earth materials can be used to infer the effect of water on Earth's surface processes.	There are relationships
Consider possible confounding		between structure and
variables or effects and evaluate the		function of systems.
investigation's design to ensure		Relationships between
variables are controlled.		structure and function
		can be inferred from
Plan an investigation (science)		their overall structure.
individually and collaboratively to		Relationships between
produce data to serve as the basis		structure and function

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
for evidence as part of building and		can be inferred from the
revising models. Consider possible		way their components
confounding variables or effects		are shaped.
and evaluate the investigation's		Relationships between
design to ensure variables are		structure and function
controlled.		can be inferred from the
Test a design (engineering)		molecular substructures
individually and collaboratively to		of its various materials.
produce data to serve as the basis		
for evidence as part of building and		
revising models. Consider possible		
confounding variables or effects		
and evaluate the investigation's		
design to ensure variables are		
controlled.		
Plan an investigation (science)		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for supporting		
explanations for phenomena.		
Consider possible confounding		
variables or effects and evaluate		
the investigation's design to ensure		
variables are controlled.		
Test a design (engineering)		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for supporting		
explanations for phenomena.		
Consider possible confounding		
variables or effects and evaluate		
the investigation's design to ensure		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
variables are controlled.		
Plan an investigation (science		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for testing solutions to		
problems. Consider possible		
confounding variables or effects		
and evaluate the investigation's		
design to ensure variables are		
controlled.		
Test a design (engineering)		
individually and collaboratively to		
produce data to serve as the basis		
for evidence for testing solutions to		
problems. Consider possible		
confounding variables or effects		
and evaluate the investigation's		
design to ensure variables are		
controlled.)		

Clarification Statement

Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).

0

Performance Expectation and Louisiana Connectors

HS-ESS2-6 Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. LC-HS-ESS2-6a Use a model of photosynthesis to identify that carbon is exchanged between living and nonliving systems. LC-HS-ESS2-6b Use a model of cellular respiration to identify that carbon is exchanged between living and nonliving systems. LC-HS-ESS2-6c Develop and/or use a quantitative model to identify relative amount of and/or the rate at which carbon is transferred among hydrosphere, atmosphere, geosphere, and biosphere.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Developing and using models:	WEATHER AND CLIMATE	ENERGY AND MATTER
Modeling in 9-12 builds on K-8	Gradual atmospheric changes were due to plants and other organisms that captured carbon	The total amount of
experiences and progresses to using,	dioxide and released oxygen. (HS.ESS2D.b)	energy and matter in
synthesizing, and developing models		closed systems is
to predict and show relationships	Plants contribute to the make-up of Earth's atmosphere by absorbing carbon dioxide and	conserved.
among variables between systems	releasing oxygen.	
and their components in the natural	Carbon continuously cycles from one sphere to another.	When materials
and designed worlds.	In the past, the relative amount of carbon that cycled through the hydrosphere,	interact within a closed
 Develop a model based on 	atmosphere, lithosphere or geosphere, and biosphere was partially due to the activity of	system, the total mass
evidence to illustrate	plants and other organisms.	of the system remains
the relationships between systems		the same. Energy may
or between	Changes in the atmosphere due to human activity have increased carbon dioxide	change forms, but the
components of a system.	concentrations and thus affect climate. (HS.ESS2D.c)	total amount of energy
		cannot change in
Develop a model based on evidence	Human activities that add carbon dioxide to the atmosphere may be warming Earth's	physical systems.
to illustrate the relationships	atmosphere.	
between systems.	A large amount of carbon dioxide has been released into Earth's atmosphere by human-	
Develop a model based on evidence	related fossil fuel combustion.	
to illustrate the components of a	An increase in atmospheric carbon can increase the amount of heat energy stored in the	
system.	system.	

0

Clarification Statement

Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.

Performance Expectation and Louisiana Connectors

HS-ESS3-1 Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.

LC-HS-ESS3-1a Explain the relationship between human activity (e.g., population size, where humans live, types of crops grown) and changes in the amounts of natural resources using evidence.

LC-HS-ESS3-1b Explain the relationship between human activity (e.g., population size, where humans live, types of crops grown) and changes in the occurrence of natural hazards using evidence.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL RESOURCES	CAUSE AND EFFECT
designing solutions: Constructing	Resource availability has guided the development of human society. (HS.ESS3A.a)	Empirical evidence is
explanations (science) and designing		required to differentiate
solutions (engineering) in 9-12	The availability of natural resources has influenced where humans have populated regions	between cause and
builds on K-8 experiences and	of Earth.	correlation and make
progresses to explanations and	Environmental factors have affected human populations over the course of history.	claims about specific
designs that are supported by	Resource availability has driven global development of societies, sizes of human	causes and effects.
multiple and independent student-	populations, and human migrations.	
generated sources of evidence	Evidence (e.g., from text or other investigations) show correlations between human	Evidence is required
consistent with scientific ideas,	population distribution and regional availability of resources such as fresh water, fertile	when attributing an
principles, and theories.	soils, and fossils fuels.	observed phenomenon
 Construct an explanation based on 		to a specific cause.
valid and reliable evidence obtained	NATURAL HAZARDS	Evidence is required to
from a variety of sources (including	Natural hazards and other geologic events have shaped the course of human history; [they]	explain the causal
students' own investigations,	have significantly altered the sizes of human populations and have driven human migrations.	mechanisms in a system
models, theories, simulations, peer	(HS.ESS3B.a)	under study.
review) and the assumption that		Evidence is required to
theories and laws that describe the	Natural hazards such as earthquakes, tsunamis, volcanic eruptions, severe weather, floods,	support a claim about
natural world operate today as they	and coastal erosion, have historically affected the sizes and distributions of human	the causal mechanisms
did in the past and will continue to	populations.	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
do so in the future.	Environmental factors have affected human populations over the course of history. Natural disasters and other geologic events have driven global development of societies,	in a system under study.
Construct an explanation based on valid and reliable evidence from a variety of sources. Construct an explanation based on valid and reliable evidence from the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Revise an explanation based on valid and reliable evidence from a variety of sources. Revise an explanation based on valid and reliable evidence from the assumption that theories and laws	Natural disasters and other geologic events have driven global development of societies, sizes of human populations, and human migrations. Historical accounts of natural disasters (e.g., Krakatoa eruption, American Dust Bowl, Super storm Sandy, and Hurricane Katrina), resulting human suffering and loss of life could provide empirical evidence of past impacts on human population size and distribution.	study.
that describe the natural world operate today as they did in the past and will continue to do so in the future.		
-		

Clarification Statement

Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Natural hazards and other geologic events exhibit some non-random patterns of occurrence. Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.

P

Performance Expectation and Louisiana Connectors

HS-ESS3-2 Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. LC-HS-ESS3-2a Identify a solution that demonstrates the most preferred cost-benefit ratios for developing, managing, and utilizing energy and mineral resources (i.e., conservation, recycling, and reuse of resources).

LC-HS-ESS3-2b Compare design solutions for developing, managing, and/or utilizing energy or mineral resources.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	NATURAL RESOURCES	SYSTEMS AND SYSTEM
designing solutions: Constructing	All forms of energy production and other resource extraction have associated economic,	MODELS
explanations (science) and designing	social, environmental, and geopolitical costs and risks as well as benefits. New technologies	Systems can be
solutions (engineering) in 9-12	and social regulations can change the balance of these factors. (HS.ESS3A.b)	designed to do specific
builds on K-8 experiences and		tasks.
progresses to explanations and	Anything in the environment that is naturally occurring and used by people is a natural	
designs that are supported by	resource.	Systems can be
multiple and independent student-	Demand for energy by society leads to continuous exploration in order to expand supplies of	designed to explain
generated sources of evidence	fossil fuels.	phenomena (scientific).
consistent with scientific ideas,	The increase in energy demand and the new technologies being developed to meet these	Systems can be
principles, and theories.	needs and improve the efficiencies of energy systems have social and environmental	designed to refine
 Design, evaluate, and/or refine a 	consequences.	solutions (engineering).
solution to a complex real-world	New technologies of energy production are being developed. For example, the technique of	Systems can be
problem, based on scientific	using hydraulic fracturing to extract natural gas from shale deposits versus other traditional	designed for
knowledge, student-generated	means of acquiring energy from natural resources.	understanding and
sources of evidence, prioritized	New technologies could have deep impacts on society and the environment, including some	testing ideas that are
criteria, and tradeoff considerations.	that were not anticipated.	applicable throughout
	New technologies are being developed to increase the use of alternate energy sources.	science and
Design a solution to a complex real-		engineering.
world problem, based on scientific	DESIGNING SOLUTIONS TO ENGINEERING PROBLEMS	
knowledge, student-generated	When evaluating solutions, it is important to take into account a range of constraints,	
sources of evidence, prioritized	including cost, safety, reliability, and aesthetics, and to consider social, cultural, and	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
criteria, and trade-off	environmental impacts. (HS.ETS1B.a)	
considerations.		
Evaluate a solution to a complex	It is important to determine the full impact of the advantages and disadvantages when	
real-world problem, based on	evaluating a solution.	
scientific knowledge, student-	New technologies offer solutions based on cost-benefit ratios, scientific ideas and principles,	
generated sources of evidence,	empirical evidence, and logical arguments regarding relevant factors (e.g., economic,	
prioritized criteria, and trade-off	societal, environmental, and ethical considerations).	
considerations.		
Refine a solution to a complex real-		
world problem, based on scientific		
knowledge, student-generated		
sources of evidence, prioritized		
criteria, and trade-off		
considerations.		

Clarification Statement

Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural, soil use, forestry, and mining (coal, tar sands, and oil shales), and pumping (ground water, petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen.

Performance Expectation and Louisiana Connectors

HS-ESS3-3 Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

LC-HS-ESS3-3 Use numerical data to determine the effects of a conservation strategy to manage natural resources and to sustain human society and plant and animal life.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	HUMAN IMPACTS ON EARTH SYSTEMS	STABILITY AND CHANGE
computational thinking:	The sustainability of human societies and the biodiversity that supports them requires	Change and rates of
Mathematical and computational	responsible management of natural resources. (HS.ESS3C.a)	change can be
thinking in 9-12 builds on K-8		quantified and modeled
experiences and progresses to using	Responsible use of energy requires consideration of energy availability, efficiency of its use,	over very short or very
algebraic thinking and analysis, a	the environmental impact, and possible alternate sources.	long periods of time.
range of linear and nonlinear	Poor management of natural resources can have negative impacts on human populations.	Some system changes
functions (e.g., trigonometric,		are irreversible.
exponential and logarithmic) and		
computational tools for statistical		Change and rates of
analysis to analyze, represent, and		change can be
model data. Simple computational		quantified over very
simulations are created and used		short or very long
based on mathematical models of		periods of time.
basic assumptions.		Change and rates of
 Create a computational model or 		change can be modeled
simulation of a phenomenon,		over very short or very
designed device, process, or system.		long periods of time.
		Some system changes
Create/use a computational model		are irreversible.
of a phenomenon.		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Revise a computational model of a		
phenomenon.		
Create/use a simulation of a		
phenomenon.		
Revise a simulation of a		
phenomenon.		
Create/use a computational model		
of a process.		
Revise a computational model of a		
process.		
Create/use a simulation of a		
process.		
Revise a simulation of a process.		
Create/use a computational model		
of a system.		
Revise a computational model of a		
system.		
Create/use a simulation of a		
system.		
Revise a simulation of a system.		

Clarification Statement

Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).

P

Performance Expectation and Louisiana Connectors

HS-ESS3-6 Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

LC-HS-ESS3-6a Use representations to describe the relationships among Earth systems and how those relationships are being modified due to human activity (e.g., increase in atmospheric carbon dioxide, increase in ocean acidification, effects on organisms in the ocean (coral reef), carbon cycle of the ocean, possible effects on marine populations).

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	WEATHER AND CLIMATE	SYSTEMS AND SYSTEM
computational thinking:	Current models predict that, although future regional climate changes will be complex and	MODELS
Mathematical and computational	varied, average global temperatures will continue to rise. The outcomes predicted by global	When investigating or
thinking in 9-12 builds on K-8	climate models strongly depend on the amounts of human-generated greenhouse gases	describing a system, the
experiences and progresses to using	added to the atmosphere each year and by the ways in which these gases are absorbed by the	boundaries and initial
algebraic thinking and analysis, a	ocean and biosphere. (HS.ESS2D.d)	conditions of the system
range of linear and nonlinear		need to be defined and
functions (e.g., trigonometric,	Current models of Earth's natural systems include system boundaries, initial conditions,	their inputs and outputs
exponential and logarithmic) and	inputs and outputs, and relationships that determine the interaction (e.g., the relationship	analyzed and described
computational tools for statistical	between atmospheric carbon dioxide and production of photosynthetic biomass and ocean	using models.
analysis to analyze, represent, and	acidification).	
model data. Simple computational	The increased carbon dioxide level in the atmosphere traps more heat. This will lead to a	When investigating a
simulations are created and used	gradual increase in the temperature of Earth's atmosphere.	system, the boundaries
based on mathematical models of	Human activities, such as the release of greenhouse gases from burning fossil fuels, are	and initial conditions of
basic assumptions.	major factors in the current rise in Earth's mean surface temperature.	the system need to be
 Use a computational 	Based on current models, Earth's average global temperatures will continue to rise due to	defined.
representation of phenomena or	an increase in human-generated greenhouse gases (e.g., carbon dioxide and methane) in	When describing a
design solutions to describe and/or	Earth's atmosphere and associated feedbacks.	system, the boundaries

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
support claims and/or explanations.	Human impact on climate change must be addressed.	and initial conditions of
	Reducing the level of climate change and reducing human vulnerability to whatever climate	the system need to be
Use a computational	changes do occur depend on the understanding of climate science and engineering	defined.
representation of phenomena to	capabilities.	When investigating a
describe claims.		system, the inputs and
Use a computational	GLOBAL CLIMATE CHANGE	outputs need to be
representation of phenomena to	Important discoveries are still being made about how the ocean, the atmosphere, and the	analyzed and described
describe explanations.	biosphere interact and are modified in response to human activities (e.g., through computer	using models.
Use a computational	simulations and other discoveries satellite imagery). (HS.ESS3D.b)	When describing a
representation of phenomena to		system, the inputs and
support claims.	Scientists continually learn more about how Earth's systems interact and are changed by	outputs need to be
Use a computational	human activities.	analyzed and described
representation of phenomena to	Modern civilization depends on major technological systems.	using models.
support explanations.	Through computer simulations and other studies, important discoveries are still being made	
Use a computational	about how the ocean, atmosphere, and biosphere interact and are modified in response to	
representation of a design solution	human activities.	
to describe claims.	Scientists and engineers use human-generated models including computer simulations, to	
Use a computational	predict how the amount of greenhouse gases in Earth's atmosphere impacts the biological	
representation of a design solution	and physical processes on Earth (e.g., oceanic acidification, coral bleaching, ocean	
to describe explanations.	circulation, etc.).	
Use a computational		
representation of a design solution		
to support claims.		
Use a computational		
representation of a design solution		
to support explanations.		

Clarification Statement

Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.

Performance Expectation and Louisiana Connectors

HS-LS2-1 Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity, biodiversity and populations of ecosystems at different scales.

LC-HS-LS2-1a Recognize that the carrying capacities of ecosystems are related to the availability of living and nonliving resources and challenges (e.g., predation, competition, disease).

LC-HS-LS2-1b Use a graphical representation to identify carrying capacities in ecosystems as limits to the numbers of organisms or populations they can support.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	SCALE, PROPORTION,
computational thinking:	Ecosystems have carrying capacities, which are limits to the numbers of organisms and	AND QUANTITY
Mathematical and computational	populations they can support. These limits result from such factors as the availability of living	The significance of a
thinking in 9-12 builds on K-8	and nonliving resources and from such challenges as predation, competition, and disease that	phenomenon is
experiences and progresses to using	affect biodiversity, including genetic diversity within a population and species diversity within	dependent on the scale,
algebraic thinking and analysis, a	an ecosystem. Organisms would have the capacity to produce populations of great size were	proportion, and quantity
range of linear and nonlinear	it not for the fact that environments and resources are finite. This fundamental tension	at which it occurs.
functions (e.g., trigonometric,	affects the abundance (number of individuals) of species in any given ecosystem. (HS.LS2A.a)	
exponential		The size and time scales
and logarithmic) and computational	Carrying capacities are limits to the numbers of organisms and populations an ecosystem	relevant to various
tools for statistical analysis to	can support.	objects, systems, and
analyze, represent, and model data.	The carrying capacity for a specific population in an ecosystem depends on the resources	processes determine
Simple computational simulations	available.	the significance of a
are created and used based on	These limits can be a result of shifting living (predators, competition, and available food)	phenomena. Specific

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
mathematical models of basic	and non-living (shelter, water, and climate) factors within a specific environment.	phenomena correspond
assumptions.	Given adequate biotic and abiotic resources and no disease or predators, populations	to a specific scale (e.g.,
• Use mathematical, computational,	increase at rapid rates.	the size of the nucleus
and/or algorithmic representations	Resources, (limiting factors), predation and climate, limit the growth of populations in	of an atom to the size
of phenomena or design solutions to	specific niches in an ecosystem.	of the galaxy and
describe and/or support claims		beyond).
and/or explanations.	Human activity directly and indirectly affect biodiversity and ecosystem health (e.g., habitat	
	fragmentation, introduction of nonnative or invasive species, overharvesting, pollution and	
Use mathematical or algorithmic	climate change). (HS.LS2A.b)	
forms for scientific modeling of		
phenomena to describe claims.	Humans are an integral part of the natural system, and human activities can alter the	
Use mathematical or algorithmic	stability of ecosystems.	
forms for scientific modeling of	Human-related changes to one or more of these factors can result in an ecosystem breaking	
design solutions to describe claims.	down or the creation of an entirely new ecosystem.	
Use mathematical or algorithmic	Human activities have a major effect on other species. For example, increased land use	
forms for scientific modeling of	reduces habitat available to other species, pollution changes the chemical composition of	
phenomena to support claims.	air, soil, and water, and introduction of non-native species disrupts the ecological balance.	
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to support claims.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		
explanations		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Use mathematical or algorithmic forms for scientific modeling of design solutions to support explanations.		

Clarification Statement

Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate and competition. Examples of mathematical comparisons could include graphs, charts, histograms, or population changes gathered from simulations or historical data sets.

Performance Expectation and Louisiana Connectors

HS-LS2-4 Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. LC-HS-LS2-4a Use a graphical or mathematical representation to identify the changes in the amount of matter as it travels through a food web. LC-HS-LS2-4b Use a graphical or mathematical representation to identify the changes in the amount of energy as it travels through a food web.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Using mathematics and	CYCLES OF MATTER AND ENERGY TRANSFER IN ECOSYSTEMS	ENERGY AND MATTER:
computational thinking:	Energy is inefficiently transferred from one trophic level to another that affect the relative	FLOWS, CYCLES,
Mathematical and computational	number of organisms that can be supported at each trophic level and necessitates a constant	AND CONSERVATION
thinking in 9-12 builds on K-8	input of energy from sunlight or inorganic compounds from the environment. (HS.LS2B.b)	Energy cannot be
experiences and progresses to using		created or destroyed—it
algebraic thinking and analysis, a	Only a fraction of the energy available at the lower level of a food web is transferred up,	only moves between
range of linear and nonlinear	resulting in fewer organisms at higher levels.	one place and another
functions (e.g., trigonometric,	The inefficiency of energy transfer determines the number of trophic levels and affects the	place, between objects
exponential	relative number of organisms at each trophic level in an ecosystem.	and/or fields, or
and logarithmic) and computational	All energy is conserved as it passes from the sun through an ecosystem.	between systems.
tools for statistical analysis to	During energy transformations, some energy is converted to unusable heat.	
analyze, represent, and model data.	A continual input of energy from the sun keeps the process going.	Energy cannot be
Simple computational simulations	On average, regardless of scale, 10% of energy is transferred up from one trophic level to	created or destroyed.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
are created and used based on	another.	Energy can be
mathematical models of basic		transferred from one
assumptions.	Photosynthesis, cellular respiration, decomposition and combustion are important	object to another and
• Use mathematical, computational,	components of the carbon cycle, in which carbon is exchanged among the biosphere,	can be transformed
and/or algorithmic representations	atmosphere, hydrosphere, and geosphere through chemical, physical, geological, and	from one form to
of phenomena or design solutions to	biological processes. (HS.LS2B.c)	another, but the total
describe and/or support claims		amount of energy never
and/or explanations.	Carbon is an essential element cycled through all levels of life from cellular to ecosystems, and is required for survival of all living organisms.	changes.
Use mathematical or algorithmic	Photosynthesis (the main way that solar energy is captured and stored on Earth) and	
forms for scientific modeling of	cellular respiration are important components of the carbon cycle, in which carbon is	
phenomena to describe claims.	exchanged between living and nonliving systems.	
Use mathematical or algorithmic	Matter needed to sustain life in ecosystems is continually recycled (e.g., carbon cycle, water	
forms for scientific modeling of	cycle, nitrogen cycle, mineral cycles) among organisms and between organisms and the	
design solutions to describe claims.	environment.	
Use mathematical or algorithmic		
forms for scientific modeling of	Photosynthesis, chemosynthesis, aerobic and anaerobic respiration and cellular respiration	
phenomena to support claims.	(including anaerobic processes) provide most of the energy for life processes. Environmental	
Use mathematical or algorithmic	conditions restrict which and when reactions can occur. (HS.LS2B.a) (suggested extension)	
forms for scientific modeling of		
design solutions to support claims.	The processes of photosynthesis (making oxygen and sugars) and cellular respiration	
Use mathematical or algorithmic forms for scientific modeling of	(making energy from sugar, done in plants and animals) provide most of the energy for life on earth.	
phenomena to describe	The reactants and products of photosynthesis and cellular respiration (aerobic and	
explanations.	anaerobic) can be used to relate the Law of Conservation of Matter and the Law of	
Use mathematical or algorithmic	Conservation of Energy to ecosystems, using the carbon cycle can as a reference.	
forms for scientific modeling of		
design solutions to describe		
explanations.		
Use mathematical or algorithmic		
forms for scientific modeling of		
phenomena to support		

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
explanations. Use mathematical or algorithmic forms for scientific modeling of design solutions to support explanations.		

Clarification Statement Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.

Performance Expectation and Louisiana Connectors

HS-LS2-6 Evaluate the claims, evidence and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.

HS-LS2-6a Use evidence to identify how modest biological or physical changes versus extreme changes affect stability and change (e.g., number and types of organisms) in ecosystems.

HS-LS2-6b Evaluate explanations of how living things in an ecosystem are affected by changes in the environment (e.g., changes to the food supply, climate change, or the introduction of predators).

HS-LS2-6c Evaluate explanations of how interactions in ecosystems maintain relatively stable conditions, but changing conditions may result in a new ecosystem.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Engaging in argument from	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
evidence: Engaging in argument	The dynamic interactions within an ecosystem can keep its numbers and types of organisms	Much of science deals
from evidence in 9-12 builds on K-8	relatively constant over long periods of time under stable conditions. If a modest biological or	with constructing
experiences and progresses to using	physical disturbance to an ecosystem occurs, it may return to its more or less original status	explanations of how
appropriate and sufficient evidence	(i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme	things change and how
and scientific reasoning to defend	fluctuations in conditions or the size of any population, however, can challenge the	they remain stable.
and critique claims and explanations	functioning of ecosystems in terms of resources and habitat availability and may result in new	
about the natural and designed	ecosystems. (HS.LS2C.a)	Science deals with

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
world(s). Arguments may also come		constructing
from current scientific or historical	Under most circumstances a natural balance is maintained within an ecosystem.	explanations of how
episodes in science.	Organisms both cooperate and compete in ecosystems.	things change. Science
 Evaluate the claims, evidence, 	The interrelationships and interdependencies of these organisms may generate complex	deals with constructing
and/or reasoning behind currently	ecosystems that are stable over long periods of time and tend to have cyclic fluctuations	explanations of how
accepted explanations or solutions	around an equilibrium (i.e., the ecosystem is resilient).	things remain stable.
to determine the merits of	Extreme fluctuations, such as from natural disasters, can challenge the functioning of	
arguments.	ecosystems in terms of resources and habitat availability.	
	These changes can result in an ecosystem breaking down or the creation of an entirely new	
Evaluate the claims behind	ecosystem.	
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the claims behind		
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the evidence behind		
currently accepted solutions to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted explanations to		
determine the merits of arguments.		
Evaluate the reasoning behind		
currently accepted solutions to		
determine the merits of arguments.		

Clarification Statement

Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood and extreme changes, such as volcanic eruption or sea level rise. Emphasis should be on describing drivers of ecosystem stability and change, not on the organismal mechanisms of responses and interactions.

Performance Expectation and Louisiana Connectors

HS-LS2-7 Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

LC-HS-LS2-7a Describe how people can help protect the Earth's environment and biodiversity (e.g., preserving ecosystems) and how a human activity would threaten Earth's environment and biodiversity (e.g., pollution, damaging habitats, over hunting).

LC-HS-LS2-7b Evaluate or refine a solution to changes in an ecosystem (biodiversity) resulting from a human activity.

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
Constructing explanations and	ECOSYSTEM DYNAMICS, FUNCTIONING, AND RESILIENCE	STABILITY AND CHANGE
designing solutions: Constructing	Ecosystems with a greater biodiversity tend to have a greater resistance and resilience to	Much of science deals
explanations (science) and designing	change. Moreover, anthropogenic changes (induced by human activity) in the environment—	with constructing
solutions (engineering) in 9-12	including habitat destruction, pollution, introduction of invasive species, overexploitation, and	explanations of how
builds on K-8 experiences and	climate change—can disrupt an ecosystem and threaten the survival of some species.	things change and how
progresses to explanations and	(HS.LS2C.b)	they remain stable.
designs that are supported by		
multiple and independent student-	Biodiversity helps maintain stability in ecosystems.	Science deals with
generated sources of evidence	However, factors caused by humans (e.g., habitat destruction, pollution, introduction of	constructing
consistent with scientific ideas,	invasive species) have negative effects on the environment and biodiversity. Some system	explanations of how
principles, and theories.	changes are irreversible.	things change. Science
 Design, evaluate, and/or refine a 		deals with constructing
solution to a complex real-world	BIODIVERSITY AND HUMANS	

Science and Engineering Practice	Disciplinary Core Idea	Crosscutting Concept
problem, based on scientific	Biodiversity is increased by the formation of new species (speciation) and decreased by the	explanations of how
knowledge, student-generated	loss of species (extinction). Humans depend on the living world for the resources and other	things remain stable.
sources of evidence, prioritized	benefits provided by biodiversity. Human activity is also having adverse impacts on	
criteria, and trade-off	biodiversity through overpopulation, overexploitation, habitat destruction, pollution,	
considerations.	introduction of invasive species, and climate change. Thus, sustaining biodiversity so that	
	ecosystem functioning and productivity are maintained is essential to supporting and	
Design a solution to a complex real-	enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of	
world problem, based on scientific	recreational or inspirational value. (HS.LS4D.a)	
knowledge, student-generated		
sources of evidence, prioritized	Humans depend on the living world for resources.	
criteria, and trade-off	Thus, protecting the environment and biodiversity helps sustain human life.	
Considerations.	Ecosystems undergo major changes as a result of such numan-related factors as	
real-world problem, based on	species, and climate change.	
scientific knowledge. student-	Sustainability of human societies and the biodiversity that supports them require	
generated sources of evidence,	responsible management of natural resources.	
prioritized criteria, and trade-off considerations.	Changes in the physical, chemical, or biological conditions of an ecosystem can alter the diversity of species in the system.	
Refine a solution to a complex real-	Over time, ecosystems change and populations of organisms adapt, move, or become	
world problem, based on scientific	extinct.	
knowledge, student-generated		
sources of evidence, prioritized	DEVELOPING POSSIBLE SOLUTIONS	
criteria, and trade-off	when evaluating solutions it is important to take into account a range of constraints including	
considerations.	cost, safety, reliability and aesthetics and to consider social, cultural and environmental	
	IIIpacis. (hs.eisib.a)	
	It is important to determine the full impact of the advantages and disadvantages when evaluating a solution.	
	The development of solutions is driven by the following factors: economical, political,	
	cultural, social, sajety, ana environmental.	

Clarification Statement

Examples of human activities can include urbanization, building dams, or dissemination of invasive species.

