

Office of Assessments, Accountability, and Analytics

Grade 6 Science Achievement-Level Descriptors

This document includes the following:

- LEAP 2025 Science Assessments Support Key Shifts in Science Instruction
- Achievement-Level Definitions
- Achievement-Level Descriptors

LEAP 2025 Science Assessments Support Key Shifts in Science Instruction

The operational test will assess a student's understanding of the grade 6 LSS for Science reflecting the multiple dimensions of the standards.

Shift: Apply content knowledge and skills (Disciplinary Core Idea, DCI)

In the classroom, students develop skills and content knowledge reflected in the Performance Expectations (PE) and detailed in the Disciplinary Core Ideas (DCI), the key skills and knowledge students are expected to master by the end of the course.

On the test, students answer questions that require content knowledge and skills aligned to PE bundles (groupings of like PEs) and the corresponding DCIs.

Shift: Investigate, evaluate, and reason scientifically (Science and Engineering Practice, SEP)

In the classroom, students do more than learn about science: they "do" science. Simply having content knowledge and scientific skills are not enough; students must investigate and apply content knowledge to scientific phenomena. Phenomena are real world observations that can be explained through scientific knowledge and reasoning (e.g., water droplets form on the outside of a water glass, plants tend to grow toward their light source, different layers of rock can be seen on the side of the road). Science instruction must integrate the practices, or behaviors, of scientists and engineers as students investigate real-world phenomena and design solutions to problems.

On the test, students do more than answer recall questions about science; they apply the practices, or behaviors, of scientists and engineers as students investigate each real-world phenomenon and design solutions to problems.

Shift: Connect ideas across disciplines (Crosscutting Concept, CCC)

In the classroom, students develop a coherent and scientifically-based view of the world, they must make connections across the domains of science (life science, physical science, earth and space science, environmental science, and engineering, technology, and applications of science). These connections are identified as crosscutting concepts (CCC).

On the test, sets of questions assess student application of knowledge across the domains of science for a comprehensive picture of student readiness for their next grade or course in science.

Achievement-Level Definitions

Achievement-level definitions briefly describe the expectations for student performance at each of Louisiana's five achievement levels. The achievement levels are part of Louisiana's cohesive assessment system and indicate a student's ability to demonstrate proficiency on the Louisiana student standards defined for a specific course.

The following list identifies the achievement-level definitions for the LEAP 2025 assessment program.

- Advanced: Students performing at this level have **exceeded** college and career readiness expectations and are well prepared for the next level of studies in this content area.
- Mastery: Students performing at this level have met college and career readiness expectations and are prepared for the next level of studies in this content area.
- **Basic:** Students performing at this level have **nearly met** college and career readiness expectations and may need additional support to be fully prepared for the next level of studies in this content area.
- Approaching Basic: Students performing at this level have partially met college and career readiness expectations and will need much support to be prepared for the next level of studies in this content area.
- **Unsatisfactory:** Students performing at this level have **not yet met** the college and career readiness expectations and will need extensive support to be prepared for the next level of studies in this content area

Achievement-Level Descriptors

Achievement-level descriptors (ALDs) are content specific and describe the knowledge, skills, and processes that students typically demonstrate at each achievement level. The Achievement-Level Descriptors Table, shown below, is color-coded to highlight the key shifts in science instruction built into the LEAP 2025 science assessments. The codes are: **SEP = blue; DCI = orange; CCC = green**

Science and Engineering Practices (SEP) are the practices that scientists and engineers use when investigating real world phenomena and designing solutions to problems. There are eight science and engineering practices that apply to all grade levels and content areas.

- 1. Asking questions (science) and defining problems (engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematical and computational thinking
- 6. Constructing explanations (science) and designing solutions (engineering)
- 7. Engaging in argument with evidence
- 8. Obtaining, evaluating, and communicating information

Crosscutting Concepts (CCC) are common themes that have application across all disciplines of science and allow students to connect learning within and across grade levels or content areas. The seven crosscutting concepts apply to all grade levels and content areas.

- 1. Patterns (PAT)
- 2. Cause and effect (C/E)
- 3. Scale, proportion, and quantity (SPQ)
- 4. Systems and models (SYS)
- 5. Energy and matter (E/M)
- 6. Structure and function (S/F)
- 7. Stability and change (S/C)

Grade 6 Achievement-Level Descriptors

Performance Expectation	Level 5: Advanced	Level 4: Mastery	Level 3: Basic	Level 2: Approaching Basic
		Investigate		
6-MS-PS2-2 Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. CCC: S/C SEP: 3	Evaluate and/or revise an investigation plan to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.	Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.	Classify variables in an investigation to provide evidence that the change in an object's motion is related to the sum of the forces on the object and the mass of the object.	Put the steps of an investigation plan in order, to collect evidence that the change in an object's motion is related to the forces exerted on the object and the mass of the object.
6-MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. CCC: C/E SEP: 1	Evaluate data to describe a possible change to an investigation and predict an effect of that change on the strength of electric and magnetic forces.	Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.	Identify data that can answer questions about variables that result in changes in electric and magnetic forces.	Identify variables that should be studied to answer a question about factors that cause changes in electric and magnetic forces.

Performance	Level 5: Advanced	Level 4: Mastery	Level 3: Basic	Level 2: Approaching
Expectation				Basic
6-MS-PS2-5 Conduct an	Evaluate and/or revise an	Plan an investigation to	Classify variables in an	Put the steps of an
investigation and	investigation	provide evidence that	investigation to provide	investigation plan in
evaluate the	plan/experimental design	fields exist between	evidence that fields exist	order, to provide evidence
experimental design to	to provide evidence that	objects exerting forces	between objects exerting	that fields exist between
provide evidence that	fields exist between	on each other even	forces on each other even	objects exerting forces
fields exist between	objects exerting forces	though the objects are	though the objects are	on each other even
objects exerting forces	on each other even	not in contact.	not in contact.	though the objects are
on each other even	though the objects are			not in contact.
though the objects are	not in contact.			
not in contact.				
CCC:C/E				
SEP: 3				
6-MS-LS1-1 Conduct an	Evaluate or revise an	Plan an investigation to	Classify variables in an	Put the steps of an
investigation to provide	investigation plan to	provide evidence that	investigation to provide	investigation plan in
evidence that living	provide evidence that	living things are made of	evidence that living	order, to provide evidence
things are made of cells,	living things are made of	cells, either one or many	things are made up of one	that living things are
either one or many	cells, either one or many	different numbers and	or more cells.	made up of one or more
different numbers and	different numbers and	types.		cells.
types.	types.			
CCC: SPQ				
SEP: 3				
		Evaluate		
6-MS-PS2-4 Construct	Construct and present	Support an argument	Describe	Identify evidence in
and present arguments	arguments using	using empirical evidence	observations/evidence to	simple graphs or
using evidence to support	empirical evidence to	to support the claim that	support the claim that	diagrams to support the
the claim that	support the claim that	gravitational interactions	gravitational interactions	claim that gravitational
gravitational interactions	gravitational interactions	are attractive and depend	are attractive and depend	interactions are
are attractive and depend	are attractive and depend	on the masses of	on the masses of	attractive and depend on
on the masses of	on the masses of	interacting objects.	interacting objects.	the masses of interacting
interacting objects.	interacting objects.			objects.
CCC: SYS				
SEP: 7				

Performance Expectation	Level 5: Advanced	Level 4: Mastery	Level 3: Basic	Level 2: Approaching Basic
6-MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. CCC: SPQ SEP: 4	Construct and interpret data presented in tables, graphs, and diagrams to construct/support explanations about the relationships of kinetic energy to the mass of an object and to the speed of an object.	Construct and interpret graphical displays of data to support explanations about the relationships of kinetic energy to the mass of an object and to the speed of an object.	Interpret qualitative data displays to describe the relationships between kinetic energy and the mass and/or speed of an object.	Use simple data displays to identify the relationships between kinetic energy and the mass and/or speed of an object.
6-MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave and how the frequency and wavelength change the expression of the wave. CCC: PAT SEP: 5	Use mathematical representations to construct explanations of a model for waves that includes how the amplitude of a wave is related to the energy in a wave and how the frequency and wavelength change the expression of the wave.	Use mathematical representations to support an explanation of a model for waves that includes how the amplitude of a wave is related to the energy in a wave and how the frequency and wavelength change the expression of the wave.	Use graphical representations of mathematical relationships to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave and how changes to the frequency and/or wavelength change the expression of the wave.	Use simple representations of mathematical relationships to identify a simple model for waves that includes how the amplitude of the wave is related to the energy of the wave and the relationship between frequency and wavelength.
6-MS-ESS1-3 Analyze and interpret data to determine scale properties of objects in the solar system. CCC: SPQ SEP: 4	Use data presented in tables, graphs, and diagrams to construct explanations about scale properties of objects in the solar system.	Analyze and interpret data presented in tables or graphs to support explanations about scale properties of objects in the solar system.	Interpret qualitative data to compare scale properties of objects in the solar system.	Use simple data displays to identify scale properties of objects in the solar system.

Performance Expectation	Level 5: Advanced	Level 4: Mastery	Level 3: Basic	Level 2: Approaching Basic
6-MS-ESS3-4 Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems. CCC: C/E SEP: 7	Construct or revise an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.	Support an argument with evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.	Describe evidence in simple graphs, diagrams, or text that supports an argument about how increases in human population and per-capita consumption of natural resources impact Earth's systems.	Identify evidence in simple graphs, diagrams, or text that supports an argument about how increases in human population and per-capita consumption of natural resources impact Earth's systems.
6-MS-LS2-1 Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. CCC: C/E SEP: 4	Use data presented in tables or graphs to construct a claim describing the effects of resource availability on organisms and populations of organisms in an ecosystem.	Analyze and interpret data presented in tables and graphs to support claims that provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.	Interpret qualitative data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.	Use simple data displays to identify evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.
		Reason Scientifically		
6-MS-PS1-1 Develop models to describe the atomic composition of simple molecules and extended structures. CCC: SPQ SEP: 2	Develop and/or use a model to construct explanations about the atomic compositions of simple molecules and extended structures.	Develop and/or use a model to describe the similarities and differences in the atomic compositions of simple molecules and extended structures.	Use a model to describe the atomic compositions of simple molecules and extended structures.	Describe why a model can be used to represent the compositions of simple molecules and extended structures.

Performance Expectation	Level 5: Advanced	Level 4: Mastery	Level 3: Basic	Level 2: Approaching Basic
6-MS-PS2-1 Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects. CCC: SYS SEP: 6	Apply Newton's Third Law to revise a solution to a problem or construct an explanation involving the motion of two colliding objects.	Apply Newton's Third Law to design a solution to a problem or support an explanation involving the motion of two colliding objects.	Apply Newton's Third Law to describe the factors in a system or to describe a solution to a problem involving the motion of two colliding objects.	Identify factors of Newton's Third Law in a system involving the motion of two colliding objects.
6-MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. CCC: SYS SEP: 2	Develop and/or use a model to construct explanations about when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.	Develop and/or use a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.	Use a model to compare how the arrangement of objects interacting at a distance changes the amount of potential energy stored in the system.	Use a model to identify that an object or system of objects may contain potential energy, depending on the relative positions of the objects.
6-MS-PS4-2 Develop and use a model to describe that waves are refracted, reflected, absorbed, transmitted, or scattered through various materials. CCC: S/F SEP: 2	Develop and/or use a model to construct explanations that describe that waves are refracted, reflected, absorbed, transmitted, or scattered through various materials.	Develop and/or use a model to support explanations that describe how waves are refracted, reflected, absorbed, transmitted, or scattered through various materials.	Use a model to determine if waves are refracted, reflected, absorbed, transmitted, or scattered through various materials.	Use a model to identify properties of waves that can change as they travel through material.

Performance Expectation	Level 5: Advanced	Level 4: Mastery	Level 3: Basic	Level 2: Approaching Basic
6-MS-ESS1-1 Develop and use a model of the Earth- sun-moon system to describe the reoccurring patterns of lunar phases, eclipses of the sun and moon, and seasons. CCC: PAT	Develop and/or use a model of the Earth-sun- moon system to construct explanations that describe the reoccurring patterns that result in lunar phases, eclipses of the sun and moon, and	Develop and/or use a model of the Earth-sun- moon system to explain the reoccurring patterns of lunar phases, eclipses of the sun and moon, and seasons.	Use a model to compare patterns in the Earth-sun- moon system during lunar phases, eclipses of the sun and moon, and seasons.	Use a model to identify patterns in the Earth-sun- moon system during lunar phases or seasons.
SEP: 2 6-MS-ESS1-2 Use a model to describe the role of gravity in the	seasons. Develop and/or use a model to construct explanations about the	Develop and/or use a model to describe the role of gravity in the	Use a model to identify the relationship between gravity and the distance	Use a model to identify gravity as the force that holds together the solar
motions within galaxies and the solar system. CCC: SYS SEP: 2	role of gravity in the motions within galaxies and the solar system	motions within galaxies and the solar system.	between objects in the solar system.	system and controls the orbital motions within it.
6-MS-LS1-2 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. CCC: S/F SEP: 2	Develop and/or use a model to construct explanations about the function of a cell as a whole and ways parts of cells contribute to the function.	Develop and/or use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.	Use a model to identify the parts that contribute to the function of a cell as a whole.	Use a model to identify the various functions of a cell.
6-MS-LS2-2 Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. CCC: PAT SEP: 6	Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.	Construct an explanation that identifies patterns of interactions among organisms across multiple ecosystems.	Support an explanation that identifies patterns of interactions among organisms across multiple ecosystems.	Identify an explanation with patterns of interactions among organisms across multiple ecosystems.

Performance	Level 5: Advanced	Level 4: Mastery	Level 3: Basic	Level 2: Approaching
Expectation				Basic
6-MS-LS2-3 Develop a	Develop and/or use a	Develop and/or use a	Use a model to describe	Use a model to identify
model to describe the	model to construct	model to support an	the cycling of matter and	how matter cycles and
cycling of matter and	explanations that	explanation that	flow of energy among	energy flows through
flow of energy among	describe the cycling of	describes the cycling of	living and nonliving parts	living and nonliving parts
living and nonliving parts	matter and flow of energy	matter and flow of energy	of an ecosystem	of an ecosystem (food
of an ecosystem.	among living and	among living and	(movement through	chain).
CCC: E/M	nonliving parts of an	nonliving parts of an	ecosystem).	
SEP: 2	ecosystem.	ecosystem (movement		
		through ecosystem).		