
K-12 Computer Science Standards
Writing Steering Committee
Claiborne Building | Thomas Jefferson Room 1-136 | 1201 North Third Street, Baton
Rouge, LA 70802

July 30, 2024

1

Call to Order

2

Roll Call

3

Agenda

4

Agenda

I. Call to Order

II. Roll Call

III. Approval of minutes of the meeting held July 11, 2024

IV. Consideration of a summary report regarding the grade band workgroup
recommendations for computer science content standards on Concept 4:
Algorithms and Programming

V. Consideration of an update regarding the work of the computer science
grade band workgroups

5

Approval of minutes of the meeting held
July 11, 2024

6

Consideration of a summary report
regarding the grade band workgroup
recommendations for computer science
content standards on Concept 4:
Algorithms and Programming

7

Overarching Themes

8

Students will be able to
● engage with computational thinking practices to logically manage

complex tasks and problem-solve;

● master how algorithms can make problem-solving more accessible
and increase task efficiency in real-world applications;

● interact with programming as both individuals and in teams to apply
industry best practices; and

● follow the appropriate attribution and licensing laws when
programming.

Core Concept 4 Algorithms and Programming

9

Overview: An algorithm is a sequence of steps designed to accomplish a
specific task. Algorithms are translated into programs, or code, to provide
instructions for computing systems. Algorithms and programs control all
computing systems, empowering people to communicate with the world in
novel ways and solve compelling problems. The development process to create
meaningful and efficient programs involves choosing which information to use,
how to process the data, how to store the information, practicing the
decomposition of more significant problems into simpler ones, recombining
existing solutions, and analyzing various solutions to a problem to locate the
most appropriate solution.

Subconcepts

10

1. Variables and Algorithms- Students begin working with variables
and simple algorithms in K-5. Students continue applying
computational thinking with more advanced algorithms and data
structures in grades 6-12.

2. Control Structures- In grades K-5, students engage with sequential
executions and basic control structures. As students progress into
grades 6-12, they build on their mastery by exploring more complex
arrangements to support complex program structures.

Subconcepts

11

3. Modularity- Students begin working with decomposing and
recombining algorithms in K-5. As students progress into grades
6-12, they learn how to recognize increasingly complex patterns, use
general, reusable solutions for commonly occurring scenarios, and
clearly describe tasks in widely usable ways.

4. Program Development- In grades K-5, students engage with simple
programs and develop an understanding of how and why people
create programs. In 9-12 grades, they increase the complexity of
their programming and explore the potential trade-offs made in
program design.

12

9-12 Variables and Algorithms
1A. Explain what computing memory is, where computing data is stored, and how
data is retrieved.

1B. Assess variables and classify their scope as global, local, or nested lexical.

1C. Design algorithms that can be adapted to express an idea or solve a problem.

1D. Use and adapt classical algorithms to solve computational problems.

13

9-12 Control Structures
2A. Justify the selection of specific control structures when tradeoffs involve
implementation, readability, and program performance, and explain the benefits and
drawbacks of the choices made.

2B. Design and iteratively develop computational artifacts using events to initiate
instructions.

9-12 Modularity
3A. Decompose problems into smaller components through systematic analysis,
using constructs such as procedures, modules, and/or objects.

3B. Create artifacts using procedures within a program, combinations of data and
procedures, or independent but interrelated programs.

14

9-12 Program Development
4A. Design and develop computational artifacts by working in team roles using
version control systems, integrated development environments (IDEs), and
collaborative tools and practices (code documentation).

4B. Use a standard library and/or application programming interface (API) to create
reusable code components to create simple programs and innovate existing
programs to increase complexity and refine programs.

4C. Summarize the key phases of the Software Development Life Cycle (SDLC).
Utilize the SDLC to create a computational artifact that leads to a minimum viable
product.

4D. Modify an existing program to add functionality and discuss intended and
unintended implications (e.g., the unintended breaking of other functionalities).

15

9-12 Program Development
4E. Evaluate and iteratively refine computational artifacts to make them more usable
and accessible (e.g., correctness, usability, readability, and program efficiency).

4F. Develop and utilize test cases to verify that a program performs according to its
design specifications.

4G. Apply the appropriate documentation techniques to make programs more
accessible to debug and to be maintained by others.

4H. Evaluate licenses that limit or restrict the use of computational artifacts when
utilizing resources such as libraries.

16

6-8 Variables and Algorithms
1A. Evaluate and use naming conventions for variables to accurately communicate
their meaning to other users and programmers.

1B. Compare and contrast data constants and variables.

1C. Evaluate algorithms in terms of their efficiency, correctness, or clarity.

6-8 Control Structures
2A. Compare and contrast control structure types and explain their functions.

2B. Design and iteratively develop programs that combine control structures,
including nested loops and compound conditionals.

17

6-8 Modularity
3A. Decompose problems into parts to facilitate program design, implementation,
and review.

3B. Create procedures and/or functions with parameters to organize code and make
it easier for future reuse.

18

6-8 Program Development
4A. Seek and incorporate feedback from peers to employ user-centered design
solutions.

4B. Incorporate existing resources into original programs and give the proper
attributions.

4C. Systematically test document outcomes and refine programs using a range of
test cases.

4D. Develop computational artifacts by working as a team, distributing tasks, and
maintaining an iterative project timeline.

4E. Test and debug using applicable industry practices to document and peer review
code.

19

K-5 Variables and Algorithms
1A. Create clearly named variables representing different data types and perform
operations on their values.

1B. Create, use, and apply an algorithm to complete a task. Compare the results of
algorithm usage trials and refine the algorithm.

K-5 Control Structures
2. Define what a control structure is and create programs that include sequences,
conditionals, events, and loops.

20

K-5 Modularity
3A. Define and apply decomposition to create smaller subproblems that can be
solved through step-by-step instructions from a complex problem.

3B. Modify, remix, or incorporate parts of an existing problem’s solution to develop
something new or add more advanced features to a program.

21

K-5 Program Development
4A. Develop a plan that describes a series of steps to achieve a goal with expected
outcomes (Creating a simple program).

4B. Test and debug a program or algorithm to ensure it produces its intended
outcome.

4C. Collaborate with a team of peers to design, implement, test, and review the
stages of program development.

22

K-5 Program Development
4D. Describe and justify the steps taken and choices made during a program’s
development.

4E. Using an iterative process, test a program’s execution step by step including and
documenting areas of refinement.

4F. Identify intellectual property rights and apply the appropriate attribution when
creating or remixing programs.

Progression of Concept 4:
Algorithms and Programming
Learning to program is a skill. Mastering the
complex thinking, the use of algorithms, the
joy of problem solving, and the exhilaration of
creating new solutions to problems is a
lifelong process. The age appropriate
standards created by this Committee lay the
foundation for many exciting projects,
explorations, concept masteries, and moments
of wonder as students progress from K-12.
Through the cognitive processes stimulated
by programming, students can see our world in
new ways.

23

Recess

24

Consideration of an update regarding the
work of the computer science grade band
workgroups

25

Schedule of K-12 Computer Science Standards
Writing Committee Meetings

Please contact STEM@la.gov

Date and Time Meeting and Location

May 7, 2024, 9 a.m. - 4 p.m. Meeting 1 - Claiborne Building, Baton Rouge

June 7, 2024, 9 a.m. - 4 p.m. Meeting 2 - Claiborne Building, Baton Rouge

June 20, 2024, 9 a.m. - 4 p.m. Meeting 3 - Claiborne Building, Baton Rouge

July 11, 2024, 9 a.m. - 4 p.m. Meeting 4 - Claiborne Building, Baton Rouge

July 30, 2024, 9 a.m. - 4 p.m. Meeting 5 - Claiborne Building, Baton Rouge

August 13, 2024, 9 a.m. - 4 p.m. Meeting 6 - Claiborne Building, Baton Rouge

August 27, 2024, 9 a.m. - 4 p.m. Meeting 7 - Claiborne Building, Baton Rouge

26

