Student Learning Target

Grade:	Subject:	Interval of Instruction:					
10 th -12 th	AP Physics I	Full Year					
1. WHAT SHOULD STUDENTS KNOW AND BE ABLE TO DO? HOW WILL I MEASURE SUCCESS?							
 What <u>content</u> will I prioritize 	What <u>content</u> will I prioritize?						
 What standards are most tied to success? 							
 What prior knowledge will they need to be successful? 							
• What <u>assessment</u> will provide the best evidence of my students' mastery of the priority content at the end of							
the year?							
 Will this assessment method enable me to determine how students are progressing throughout the 							
year?							
The AD Division is Alashan Docod several	feering on the big ideas to signal	It, included in the first and second severator of an algebra					
The <u>AP Physics I: Algebra-Based</u> course focuses on the big ideas typically included in the first and second semester of an algebra-							
based, introductory college-level physics sequence and provide students with enduring understandings to support future advanced							
by the AP Science Practices. The course requires that 25% of the instructional time will be spent in laboratory work, with an							
emphasis on inquiry-based investigations that provide students with opportunities to demonstrate foundational physics principles							
and apply all seven science practices def	ined in the curriculum framewo	ork.					
End-of-Year Assessment Method an	d Name:						
All students enrolled in this course will ta	ake the AP Physics I Exam that ir	ncludes 50 multiple-choice questions (single-select and					
multi-select) that represent the knowled	ge and science practices outline	ed in the AP Physics I learning objectives in the curriculum					
framework. Students will also have to re	spond to a set of free-response	e questions including three item types: experimental design					
qualitative/quantitative translation, and	short-answer.						
2. WHAT DO STUDENTS KNOW AND	WHAT ARE THEY ABLE TO D	O NOW?					
 What <u>knowledge/skills are re</u> 	alated to success with this yea	ar's <u>priority content</u> ?					
What data sources and background information are available?							

- What diagnostic assessment resources are available?
- What can I conclude about students' mastery of prior knowledge and skills?
- Based on the data, what can I conclude about students' readiness?

To determine where my students' knowledge of science and because of the mathematical treatment of the basic principles of physics that is a prevalent part of this course, I analyzed historical data related to student achievement in science and mathematics.

This course includes a significant focus on learning in a laboratory setting. Students have some experience in a laboratory setting. However, I measured their current level of knowledge and skills through a lab based assessment at the beginning of the course. This diagnostic assessment was scored with a 5 point Lab Report Rubric with 7 components (abstract, procedure, data, calculations, graphs, error analysis, and conclusion). I paired students based on similar achievement levels and they collaborated to complete the assessment.

The following chart presents the data for each student.

Louisiana Believes

2. WHAT DO STUDENTS KNOW AND WHAT ARE THEY ABLE TO DO NOW?

- What <u>knowledge/skills are related to success</u> with this year's <u>priority content</u>?
- What data sources and background information are available?
- What diagnostic assessment resources are available?
- What can I conclude about students' mastery of prior knowledge and skills?
- Based on the data, what can I conclude about students' readiness?

Student	ACT Math	Geometry Grade	Algebra II Grade	ACT Science	Chemistry	Lab Report Diagnostic Score (Average Score; components w/ score below 3)
1	20	В	Currently enrolled	25	А	2.43; 4 of 7
2	26	А	В	32	А	3.57; 0 of 7
3	27	А	А	23	В	2.86; 3 of 7
4	31	А	А	22	В	2.86; 3 of 7
5	24	А	В	21	В	2.43; 4 of 7
6	22	В	Currently enrolled	30	А	3.0; 3 of 7
7	23	В	А	22	В	2.43; 4 of 7
8	29	А	А	20	С	2.43; 4 of 7
9	21	С	Currently enrolled	26	А	2.43; 4 of 7
10	25	А	А	32	А	3.57; 0 of 7
11	26	А	В	28	В	3.0; 3 of 7
12	30	В	A	22	А	2.86; 3 of 7
13	25	A	Currently enrolled	21	А	2.43; 4 of 7
14	32	А	A	24	В	2.86; 3 of 7

This is the first year for AP Physics 1 and 2 to be taught as these courses will replace AP Physics B. Over the past 4 years, 25% of my students have scored a 3 or higher on the AP Physics B Exam. This is approximately 13% over the average for students in Louisiana for the 2013 school year.

Louisiana Believes

3. IS THERE A GROUP OF STUDENTS ON WHICH I SHOULD FOCUS THIS LEARNING TARGET?

- Have I set learning targets for all of my students?
- Which subgroups in my school population need additional support to achieve success?
- Which students will need additional support to achieve success?

Total Population: All 14 students will be the focus of this learning target.

Identified Subgroup: There are 6 students who scored below a 3 on 4 of the 7 components of the laboratory diagnostic assessment. These students will need additional help with this area of the course. If 3 of these students score a 3 or higher on the College Board administered AP Exam, I will consider this as exceptional attainment on my SLT.

My second SLT will focus on student success on an EOY Laboratory assessment.

STUDENT LEARNING TARGET:

• What level of performance on the end-of-year assessment from Step 1 do I expect the identified student population to achieve?

6 out 14 of my AP Physics I students will score a 3 or higher on the College Board Exam for this course.

SCORING PLAN:

- How will you measure your students' success?
- Based on students' baseline data, what is the minimum level of performance I expect from the identified students?
- Based on students' baseline data, how many students can <u>reasonably</u> be expected to meet or exceed the expected level of performance?

Insufficient Attainment of Target	Partial Attainment of Target	Full Attainment of Target	Exceptional Attainment of Target
(1 point):	(2 points):	(3 points):	(4 points):
The teacher has demonstrated an	The teacher has demonstrated	The teacher has demonstrated a	The teacher has demonstrated an
insufficient impact on student	some impact on student learning,	considerable impact on student	outstanding impact on student
learning by falling far short of the	but did not meet the target.	learning by meeting the target.	learning by surpassing the target
target.			by a meaningful margin.
Achievement range:	Achievement range:	Achievement range:	Achievement range:
0-3 students score a 3 or	4-5 students score a 3 or	6-8 students score a 3 or	9-14 students score a 3 or
higher.	higher.	higher.	higher.

4. HOW WILL I MONITOR PROGRESS?

- When will I monitor students' developing mastery of the priority content?
- What <u>curricular resources</u> and <u>assessment methods</u> will I use to determine students' mastery of the priority content on an on-going basis?

o Are these assessment methods aligned with the end-of-year assessment identified in Step 1?

Ongoing: Student understanding will be assessed daily through opportunities to engage in conversations and investigations about the topics being studied. Throughout the year, I will ensure the laboratory experiences further develop understanding and I will monitor their learning through the use of the Laboratory Report Rubric.

I will administer Interim Assessments three times throughout the year. These assessments will included items covered up until that point and will be selected from the practices tests available through <u>College Board</u>. I will review results with students as a class and individually.

Checkpoint 1	Checkpoint 2	Checkpoint 3
Practice AP Assessment - October	Practice AP Assessment - January	Practice AP Assessment - April

Louisiana Believes

POST OFFICE BOX 94064 | BATON ROUGE, LA 70804-9064 | 1.877.453.2721 | WWW.LOUISIANABELIEVES.COM